Semantic Interoperability between Health Communication Standards through Formal Ontologies

Frank Oemig, Bernd Blobel
MIE 2009
Sarajevo, 01.09.2009
About Me

Frank Oemig
Agfa HealthCare GmbH
Solution Management
„Interfaces and Standards“

Board Member HL7 Germany
HL7-USA:
 - Past Int'l Affiliate Representative to the TSC 2008
 - HL7 Ambassador
 - Implementation & Conformance Co-Chair
IHE:
 - Foundation Member + Caretaker IT-Infrastructure
 - Delegate to epSOS

Konrad-Zuse-Platz 1-3
53227 Bonn
Germany
T: +49 (0) 228 2668-4781
M: +49 (0) 151 12668-781
Home: +49 (0) 208 3021 7656
eMail: Frank.Oemig@agfa.com
Problem

- Extended communication with
- Incompatible Communication Standards
 - HL7 v2.x
 - HL7 V3
 - ...

=> find a way out!
=> Ontologies?
GCM: Generic Component Model

Domain 1
Domain 2
Domain n

Business Concepts
Relations Network
Aggregations (Basic Services/ Functions)
Details (Basic Concepts)

Domain Perspective
Development
Process Perspective
System’s Architectural Perspective

System Component Composition

System Domains
System Viewpoints

Reference Architecture
GDM: domain selection

Communication standard / formal ontology

Business Concepts
Relations Network
Aggregations (Basic Services/ Functions)
Details (Basic Concepts)

Enterprise View
Information View
Computational View
Engineering View
Technology View

Development Process Perspective

Domain Perspective

System’s Architectural Perspective

Domain n
Domain 2
Domain 1

Communication standard / formal ontology

MIE 2009: Semantic Interoperability through Formal Ontologies
GSM: domain selection

enterprise View
information View
computational View
engineering View
technology View

Development Process Perspective

Domain Perspective

System's Architectural Perspective

Business Concepts
Relations Network
Aggregations (Basic Services/ Functions)
Details (Basic Concepts)

Domains

Composition/ Decomposition

HL7 v2.1
HL7 v2.2
HL7 v3 MB #19
HL7 v3 MB #20
HL7 v3 Ed. 2005
HL7 v3 Ed. 2006
HL7 v3 Ed. 2008

Reference-Ortology
Top-Level Ontology: Reference

Diagram showing the relationship between Top Level Ontology, HL7 V2.x, and HL7 V3 through Mapping.
Top-Level Ontology: Reference

Basic Concepts for Completeness

HL7 V3 + v2.x

Mapping Details

HL7 v2.x + V3

ACGT, BFO
Tooling: automatic Conversion

HL7 v2.x DB

V2.x Ontology

conversion by program

HL7 V3 MIF Files

- D-MIMs
- CMETs
- RIM
- DataTypes
- Vocabulary

conversion by scripts/programs

Ontologies (OWL Files)

- V3
- D-MIMs
- CMETs
- RIM
- DataTypes
- Concept Domain
- Codesystem
- Value Set

OWL imports
Ontology for „Message Constituents“

- Automatic generation (by programs)
Formal Ontologies

- Provision of Reference Structure
 - Helpful: better than creating one from scratch
- Lack of granularity
 - Addition of Concepts required
Mapping Aspects

- Manual definition of mapping details
- Hierarchy
 - MapStart = anchor
 - MapPart
- Conditions
- Constraints on basic relationships
Relationships

- Ontological structure for relations is essential for success:
 - Intelligent agents!

- No such structure in BFO/ACGT
Resumee

- Conversion into Ontologies by programs
 - Possible
 - Requires overall approach: top-level ontology
- Formal Ontologies
 - Require addition of concepts
 - Lack structure for relations
- Mapping
 - Manual process (tedious)
 - Hooks in at foundation, not for message instances (XML schema mapping)
 - Prepared for intelligent agents
Thank You

for your Attention!