The Epidemiologic Surveillance of Dengue Fever in French Guiana: When achievements trigger higher goals

Claude FLAMAND¹, Philippe QUENEL¹, Vanessa ARDILLON¹, Luisiane CARVALHO¹, Sandra BRINGAY²,³ and Maguelonne TEISSEIRE⁴

1 Antilles-Guyane Regional Unit of the French Institute for Public health Surveillance (Cire AG)
2 Département MIAp, University Paul-Valéry, Montpellier 3
3 LIRMM, CNRS, UMR 5506, Montpellier 2
4 TETIS Laboratory Department of Information System

Oral Presentation by Claude FLAMAND
MIE 2011, Oslo, 30 August 2011
Epidemiological surveillance

- In the last decade, urgent needs for better surveillance
 - Influenza pandemic
 - Threat of bioterrorism
 - Chikungunya (Reunion Island)
 - Cholera (Haïti), ...

Objectives of infectious disease surveillance
- To monitor the health status of a community / population
- To provide early warning of disease outbreaks
- Spatio-temporal Analysis and Interpretation
- Dissemination of information
Dengue fever

- Most important mosquito-borne viral disease
- Acquired through the bite of Aedes aegypti
- Tropical/Subtropical area
 - 2.5 billion people at risk
- Four viral serotypes (DENV1 – DENV4)
- Spectrum of clinical illness
 - Influenza-like illness
 - Fatal dengue hemorrhagic fever (DHF)
 - Dengue shock syndrome (DSS)
 - Encephalitis or Hepatitis
- No vaccine, no curative treatment
- Vector control and treatment strategies
A multi-source surveillance system

7 Biological labs (1 NRC)
- Coastal area
- Serology, NS1, RT-PCR, virus isolation
- Secure Internet access
- Daily data transmission
 - patient identification, address, phone number
 - date of onset, date of blood sample, results
 - signs of severity (Y/N)
A multi-source surveillance system

- 7 Biological labs (1 NRC)
- 30 Sentinel GPs
 - Coastal area
 - Weekly data collection
 - Number of clinical cases
 - Syndromic case definition
 - sudden onset of fever $\geq 38^\circ C$
 - and pain syndrome
 - headache \pm arthralgia \pm myalgia \pm retro-orbital pains
 - and no local infectious signs
 - Extrapolated incidence using ratio participating
A multi-source surveillance system

- 7 Biological labs (1 NRC)
- 30 Sentinel GPs

3 Hospital Centers
- Coastal area
- Daily Automated Internet Extraction
- Number of clinical cases
- Notification of clinical cases by the ED
 - Age, gender, zip-code
 - Reason for admission
 - Main medical diagnosis (ICD-10)
A multi-source surveillance system

- 7 Biological lab (1 NRC)
- 30 Sentinel GP
- 3 Hospital Centers

17 Health Centers (CDPS)
- Isolated territories
- Weekly Automated Extraction
- Satellite connection transmission
- Number of clinical cases by CDPS
- Same definition criteria as GP network
Global architecture of the system

LAB 1 – LAB 2 – LAB 3 – LAB 4 – LAB 5 – LAB 6 – LAB 7

Manual data Entry

Platform of collection of the biologically confirmed cases

CIRE AG

Surveillance Base

- Spatiotemporal analysis and interpretation of the data
- Early warning system and Reports dissemination
- Secure access for the suppliers to consult their own data

GPs

Number of cases

Individual data

Hospitals

Number of cases

Individual data

CDPS

30 Sentinel GPs

ED Cayenne

2 Others ED

17 CDPS

LABM

GPs

CDPS

Hospital Centers

Health authorities

Vector Control

MIE 2011, Claude FLAMAND, 5/10
Surveillance Indicators

- Weekly monitoring of
 - Dengue-like syndromes
 - GPs, CDPS, ED
 - Biologically confirmed cases
 - Rate of positivity of dengue cases biologically confirmed
 - Distribution of circulating serotypes
 - Number of hospitalized dengue cases
 - distribution of DF, DHS, DSS and others
Data analysis and Interpretation
Epidemiological phases of the PSAGE

<table>
<thead>
<tr>
<th>Stage</th>
<th>Epidemiological criteria</th>
<th>Main Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Sporadic transmission</td>
<td>Presence of sporadic cases</td>
<td>to contain the number of sporadic cases</td>
</tr>
<tr>
<td>2 - Dengue fever clusters in area(s)</td>
<td>Presence of Clusters ± epidemiological links</td>
<td>to detect and to control the spread of the cluster(s)</td>
</tr>
<tr>
<td>3 - Pre-alert epidemic</td>
<td>2 weeks above the statistical threshold for clinical and confirmed cases</td>
<td>to minimize the impact of an epidemic</td>
</tr>
<tr>
<td></td>
<td>- Preparedness and mobilization</td>
<td></td>
</tr>
<tr>
<td>4 - Confirmed Epidemic</td>
<td>2 additional weeks of exceedance</td>
<td>to minimize the impact of the epidemic</td>
</tr>
<tr>
<td>5 - End of epidemic</td>
<td>Decrease of clinical cases under the threshold during 2 weeks</td>
<td>to « level off » the control measures</td>
</tr>
</tbody>
</table>

* Shewhart Control Chart for Individual measurements based on moving ranges- size 2.
Results From 2006 to 2010

37,812 clinical cases
10,724 biological confirmed cases

Warning Alert threshold: Stage 4

Spatial distribution of the cumulative incidence of biologically confirmed cases, French Guiana, January - July 2010 - Week 1 - 30

Spatial distribution of the cumulative incidence of dengue-like syndromes, French Guiana, June - July 2010 - Week 22 - 30
Results

From 2006 to 2010

37,812 clinical cases
10,724 biological confirmed cases

<table>
<thead>
<tr>
<th>Outbreaks identified</th>
<th>Cases (N)</th>
<th>Serotypes</th>
<th>Hospitalizations</th>
<th>Death</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clinical cases</td>
<td>Biological confirmed cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2006-01 – W2006-34</td>
<td>15,700</td>
<td>2,300</td>
<td>DEN-2</td>
<td>204</td>
</tr>
<tr>
<td>W2009-01 – W2009-38</td>
<td>13,900</td>
<td>4,129</td>
<td>DEN-1</td>
<td>241</td>
</tr>
<tr>
<td>W2009-53 – W2010-38</td>
<td>9,400</td>
<td>2,431</td>
<td>DEN-4, DEN-1</td>
<td>92</td>
</tr>
</tbody>
</table>
Discussion

• Validity and performances of the system
 – Ability to manage heterogeneous data
 – Acceptability, Timeliness, Data Quality

• Utility of the system
 – Monitoring of dengue patterns in the whole territory
 – Early warning of disease outbreaks
 – Real time information to health authorities
 – Increase collaboration/communication between actors

• Future works
 – Implementation of other statistical methods for detecting outbreaks
 – Outbreak prediction
 • Use of others data sources (climatic, environmental variables)
 – Development of research projects
Thanks for your attention

Claude FLAMAND, Epidemiologist, PhD Student
Antilles-Guyane Regional Unit of the French Institute for public Health Surveillance
ARS Guyane, Avenue de flamboyants
97 300 Cayenne – Guyance française

Tel : 594 (0)5 94 25 72 52
Fax : 594 (0)5 96 25 72 95
Mail : claude.flamand@ars.sante.fr