Identifying types and causes of errors in mortality data in a clinical registry using multiple information systems

A Koetsier, N. Peek, N.F. de Keizer
Dept. of Medical Informatics, University of Amsterdam, The Netherlands
Introduction

• Intensive Care quality registry
 – NICE registry
 – 2011: 83 Dutch Intensive Care Units (ICUs)
 – Quality indicator: Standardized Mortality Ratio (SMR): Observed/Expected
Research Question

• Investigate:
 – Types and causes of errors in in-hospital mortality data
 – Influence on SMR
Methods (1)

- Re-abstract all mortality data
 - Re-abstract all mortality data
 - Resource and time consuming
- Compare to external source
 - Data of 2006-2009, 72 ICUs
 - Deterministically linked with administrative insurance claims database (claims DB)

- List of discrepancies:
 - Under registration of mortality
 - Different date of death
Methods (2)

- Subset of ICUs visited until saturation of error types was reached
 - Varying:
 - % of discrepancies
 - Type of hospital
 - Type of information system
 - Data Entry Module (DEM)
 - Patient data management system (PDMS)

- Subset of ICUs visited until saturation of error types was reached
 - Varying:
 - % of discrepancies
Methods (3)

- Pathway of registration:
 - Most data extracted from DEM or PDMS
 - Data extraction algorithm (DEA):
 - ICU and hospital discharge destination
 » Manually entered into DEM or PDMS
 - Most data extracted from DEM or PDMS
 - Data extraction algorithm (DEA):
 - Hospital Information System (HIS)
 - Died: discharge destination
 - Manually entered into DEM or PDMS
 - Alive: all other destinations including missing value
Methods (4)

- Re-abstracted records with discrepancy
- Check different information systems
• Types of errors:
 – Errors in computer software
 – Manual transcription errors
 – Failure to record outcome data

SMR analysis:
– SAPS II SMR [95% CI]
– Errors in computer software
– Manual transcription errors
Results (1)

NICE data 2006-2009
n= 197,826 records (72 ICUs)

11 ICUs visited
n=32,527 records

n= 140,527 (71.0 %) linked records (72 ICUs)

n= 2,746 (1.9%) discrepancies (72 ICUs)

Claims DB

11 ICUs visited
n= 23,855 (73.3%) linked records

n = 460 (1.9%) discrepancies

n=255 errors (1.1% of linked records) in NICE registry

n=191 errors in claims DB
Results (2)

- **Errors in computer software:**
 - Data extraction algorithm: \(n = 199 \) (78.0%)
 - Manual transcription errors: \(n = 34 \) (13.4%)
 - Failure to record outcome data: \(n = 22 \) (8.6%)

- **Manual transcription errors:**
 - HL7 message not recognized: \(n = 172 \) (86.4%)
 - Revised hospital discharge destination not entered in dataset: \(n = 27 \) (13.6%)

- **Failure to record outcome data:**
 - ICU discharge destination: \(n = 19 \) (55.9%)
 - Hospital discharge destination: \(n = 11 \) (32.3%)
 - Date of death: \(n = 4 \) (11.8%)

- **HL7 message not recognized:**
 - HIS

- **Revised hospital discharge destination not entered in dataset:**
 - HIS
 - DEM/PDMS
 - DEA

- **ICU discharge destination:**
 - HIS
 - DEM/PDMS
 - DEA
 - NICE

- **Date of death:**
 - HIS
 - DEM/PDMS
 - DEA
 - NICE

- **ICU discharge destination:**
 - HIS
 - DEM/PDMS
 - DEA
 - NICE
Conclusion

• Mortality data NICE registry reliable
 – 1.1% error
 – No influence on SMR
• Most errors (78.0%) due to errors in computer software, post ICU in-hospital mortality was 0%
 – Preventable!
 • Regularly test possible malfunctioning of software
 • Build in check that gives warning when post ICU in-hospital mortality is zero

• Using external source to find errors in mortality data more efficient than re-abstraction
Discussion

- 11 ICUs visited: no random sample
- No possibility to check errors in claims DB

- Questions?