Software-Ergonomics

Design of User Interface and Information

Software-Ergonomics and User Interface

Definition:

- **Dialog:** Interaction of user and application system
- **User Interface:** Interaction medium of the user and the application system
- **Software-Ergonomics:** Adaptation of software to humans, so that the user is not strained by the interaction with the computer more than necessary, but rather supported in his work.

User Interface

It should ensure an effective and less strained working.

The Man-Computer Interface contains:

- Input Devices
- Output Devices
- User Interface

Definition: The user interface is defined by the components of a man-computer-system, which the user is connected to in a conceptual and motor way.
1. **Examining the dexterity and skills of potential users**
 A reasonable division of labor between man and computer can be undertaken with the aid of analysis. More complex tasks can be divided into subtasks.

2. **Define the kind of interaction**
 Here it has to be clarified,
 - what kind of type of input/output (Text, Graphic,...),
 - what kind of input/output device (keyboard, mouse, monitor,...) and
 - what kind of data representation (window technique, scrollbars,...) should be chosen.

3. **Choosing a suitable dialog form between man and computer**
 Generally, the three below listed forms can be mentioned
 - computer-based dialog
 - user-based dialog
 - hybrid dialog.

User Interface

Interaction and Dialog Design

- **Computer-Based**
 - Menu
 - Dialog containing layout instructions (Prompting)
 - Form dialogue

- **Hybrid**
 - Dialogue with changing initiatives
 - Dialogue with alternative layout possibilities

- **User-Based**
 - Command language
 - Transaction code and keyword technique

User Interface

Interaction Technique

<table>
<thead>
<tr>
<th>Dialogue forms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question-Answer</td>
<td>Machine poses questions, user answers</td>
</tr>
<tr>
<td>Formulare</td>
<td>User fills in a questionnaire, which is displayed on the screen</td>
</tr>
<tr>
<td>Function keys</td>
<td>User chooses options via keys, which are assigned to certain functions</td>
</tr>
<tr>
<td>Menu</td>
<td>User chooses options, which are divided into subsets, and are presented step-by-step.</td>
</tr>
</tbody>
</table>
User Interface

Interaction and dialogue design

Menus

<table>
<thead>
<tr>
<th>Menu Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permanent Menu</td>
<td>Separately displayed list of options (horizontal, vertical, radial)</td>
</tr>
<tr>
<td>Embedded Menu</td>
<td>Options appear as marked position in the graphic or text</td>
</tr>
<tr>
<td>Dynamic Menu</td>
<td>Fade-in menu (pop-up)</td>
</tr>
<tr>
<td>Drop-down menu</td>
<td>Options appear in the window, linked to the menu bar</td>
</tr>
<tr>
<td>Cascade menu</td>
<td>Additional options appear when marginally leaving the window with the mouse</td>
</tr>
</tbody>
</table>

User-controlled dialogue forms

<table>
<thead>
<tr>
<th>Dialogue Forms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command language</td>
<td>User formulates the input using a special language</td>
</tr>
<tr>
<td>Query language</td>
<td>A special command language for database information queries</td>
</tr>
<tr>
<td>Direct manipulation</td>
<td>User interacts with graphical objects and receives immediate feedback</td>
</tr>
<tr>
<td>Natural language</td>
<td>Exchange of information between man and machine in a language of interpersonal communication</td>
</tr>
<tr>
<td>Multimedia</td>
<td>User interacts with video and audio signals</td>
</tr>
</tbody>
</table>

Criterion for Designing User Interfaces

- Analogy and Metaphors
- Training and Practice
- Feedback
The human perception tends to reduce the available information set via selective processing.

The human system is permanently affected by
- the overall input of approx. 10^9 Bit/s, whereas
- the consciousness acquires only approx. 100 Bit/s.

From this it follows that all important information needs to be available in a suitable small amount and the information needs to be easily interpretable.

Criterion for the information design:
- a) Perceptibility of the information
- b) Encoding of the information
- c) Spatio-temporal organization of the information

Perceptibility of the information

- Minimal character height [mm]
- Observation distance [mm]
- Optimal: 4 mm letters at 75 cm on-screen distance
Information Design

Encoding the Information

Feature:
- **Shape:** Figure
 - 123 ABC
- **Form:** A A A
- **Texture:**
- **Color:** Hue
 - magenta, blue, cyan, green, yellow, red
 - Saturation
 - Brightness
 - Contrast
darker, lighter background
- **Place:** Position
- **Orientation:**
- **Time:** slowly, rapidly, continuous, discrete

Graph

- **Transfer Information [bit]**
- **Stimulus Information [bit]**

Diagram

- **Optic Angle**
- **Position in the Visual Field**
Information Design

Distribution of Attention

- Vicinity
- Symmetry
- Similarity

Spatio-temporal Organization of the Information

Supplementary design characteristics can be used in addition to the organization of the information. Such as:

- Vicinity
- Symmetry
- Similarity

Design Rules

Rules of Similarity:

Rules of Vicinity:

Similarity over Vicinity:
Information Design

Grouping

- **Without Grouping**
 - DIN 66234
 - 1234567DM
 - 0203564329

- **With Grouping**
 - DIN 66 234
 - 123 456 7 DM
 - 0203 / 56 43 29

Information Design

Structuring the information without consideration of color

Categorization of the information according to color

Consideration of boundary conditions and restrictions

<table>
<thead>
<tr>
<th>Physical restriction of the eye</th>
<th>Psychological influence factors</th>
<th>Technical influence factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>- color blindness</td>
<td>- synesthetic effect of colors</td>
<td>- light conditions</td>
</tr>
<tr>
<td>- color asthenopia</td>
<td>- learned emotions and moods</td>
<td>- used hardware</td>
</tr>
<tr>
<td>- chromatic aberration</td>
<td>- effect of the lighting color</td>
<td>- positive/negative</td>
</tr>
<tr>
<td>distribution of the color receptors on the retina</td>
<td>- workaday meaning of individual colors</td>
<td>- presentation emotion</td>
</tr>
</tbody>
</table>

Assigning colors to the information categories

Information Design

Reference Scheme of Colours

by the US Department of Defense

<table>
<thead>
<tr>
<th>Color</th>
<th>Meaning</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>alarm</td>
<td>flashing in case an immediate reaction is necessary</td>
</tr>
<tr>
<td>Yellow</td>
<td>caution</td>
<td>marginal situation; beware</td>
</tr>
<tr>
<td>Green</td>
<td>alright</td>
<td>self-handling; status is satisfactory</td>
</tr>
<tr>
<td>White</td>
<td>undefined</td>
<td>undefined state; transitional state; representation of alternatives</td>
</tr>
<tr>
<td>Blue</td>
<td>Auxiliary color</td>
<td></td>
</tr>
</tbody>
</table>
Information Design

Combination of colors for characters and background (Recommended according DIN)

<table>
<thead>
<tr>
<th>Background</th>
<th>Black</th>
<th>White</th>
<th>Magenta</th>
<th>Black</th>
<th>Cyan</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>White</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Magenta</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Black</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cyan</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Green</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yellow</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Red</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*: suitable color combination -: unsuitable color combination

Pictograms

The human perception partly occurs:

- data driven
- expectation driven

Data driven: The processing of information concerning sensory data occurs automatically in one direction.

Expectation driven: The recognition of sensory data, which are led by hypotheses of the corresponding higher cognition levels.
Pictograms

Advantages of pictograms:
• Pictograms free the short-term memory and thereby offer the mind more capacity to solve problems.
• Semantic contents, through pictograms onscreen, can be grasped immediately.
• Pictograms make better use of memory capacity in comparison with words.
• Pictograms link the new knowledge with existing knowledge.
• Pictograms feature as space-saving.

Disadvantages of pictograms:
• They are not as flexible and multifaceted as verbal information carriers.
• It is easier to represent words in a differentiated way than pictures.
• A syntactical connection of two pictograms is extremely difficult.

Design criterion for pictograms:
• Pictograms should have a high degree of abstraction and simplicity.
• Outlines can be better reached via contrast than via marginal lines.
• The line width should be sufficiently broad.
• The line management of pictograms should be direct at the horizontal and vertical principal axis.
• Similar features should be represented in similar symbols.

Design of User Interface

Rules for the Design of User Interfaces according to ISO 9241 Part 10:
Drafted by B. Shneidermann

• Attempts to reach consistency
 Similar situations should be followed by similar actions.

• Offering shortcuts to experienced users
 The frequent use of a system increases the desire to reduce the amount of interactions. This can occur via function keys, hidden commands or macros.

• Offering informative Feedback
 After the user has carried out an action, this action should always be followed by a visual feedback correspond to the undertaken action.

• Dialogues should be completed
 It should be made clear for the users if a dialogue has a beginning, a middle and an end, which he can use as guideline.

• Offering a simple error handling
 The system should detect errors and offer a simple error handling.

• Offering simple undo possibilities
 The system should offer undo capabilities, so that the system returns into the former state and thus avoids that the user gets into an impasse.

• Support user-driven dialogues
 The user should be able to control the dialogue. Unexpected system actions, long data input sequences or difficulties accessing the data should be avoided.

• Reducing the strain on the long-term memory
 This could take place by using simple screen contents or system facilities.