METHOD TO INTEGRATING CLINICAL GUIDELINES INTO ELECTRONIC HEALTH RECORD (EHR) BY APPLYING THE ARCHETYPES APPROACH

Diego Garcia
Claudia Moro
Paulo Cicogna
Deborah Carvalho
Introduction

• Clinical Practice Guidelines – CPG
 • Natural language documents
 • Need to be integrated into Electronic Health Record (EHR)

• CPG and Decision Support Systems
 • Most of CPG are not fully integrated into EHR

• Requires an interface between the DSS and EHR
Context - Problem

- Transforming CPG – computable form
 - Representation formats
 - Arden Syntax, GLIF, PROforma
 - Isolated or restricted to a single specific EHR
 - GDL – new approach

- EHR standards - application
 - Two-level architecture as Archetypes approach
Context

- CPG describe
- Clinical data
- Relationships between data

1. Guideline for anemia treatment in Chronic Kidney Disease patients – Erythropoietin use (Brazilian Ministry of Health 2010);
 i. If hemoglobin rises > 0.5 g/dL/week or hemoglobin level is between 12-13 g/dL lower dose in 25-50% respecting the minimal dose of 50 UI/Kg/week

Relationship between hemoglobin level and dose alteration – Source: Brazilian Ministry of Health, 2010.
Introduction

- CPG data can be represented as archetypes
- CPG relationships can be represented as rules

Absolute iron deficiency diagnosis in Chronic Kidney Disease patients on hemodialysis is made when:

- Transferrin saturation < 20% and
- Serum ferritin < 200ng/dL

IF “transferrin saturation” < 20% AND “serum ferritin” < 200ng/dL
THEN “iron deficiency” = “absolute”
Introduction

- Wide adoption of archetypes
 - Australia, United Kingdom, Brazil, Europe

- Lack of studies specifying semantic relationships
 - Only relationships like hierarchy, cardinality ...

- More complex constraints can not be modeled
 - Conditional data entry
 - Relationship between different concepts
Objective

Present a method for integrating clinical guidelines to Electronic Health Record
Method

Phase I

Phase II

Phase III

Phase IV

Phase V

DSS Validation
Method

• Part I – Proposal of a way to identify guideline data and rules
 • Analyzing how this information is described in CPG text
 • Modeling of new archetypes

• Part II – Incorporation of rules into an archetype-enabled EHR
 • Analyzing how rules could be incorporated into archetypes
 • Need of an inference engine
 • JBoss Drools Expert
Results

- Method consisting in 5 phases

I – Identification of the data and the rules specified in the guideline

II – Archetypes elaboration

III – Definition and inclusion of rules in a rule-based inference engine and elaboration of the DSS

IV – DSS – EHR integration

V – DSS validation
Results – Phase I

- Identification of the data and the rules specified in the guideline
 - Summarization of the information
 - Revision of following points
 - Type of guideline
 - Diagnosis
 - Related signs and symptoms
 - Indicated treatments
 - Laboratory tests (values)
 - Involved epidemiological factors
Results – Phase I

• Examples

RULE 1
When “TSI < 20%” AND “serum ferritin < 200ng/dL”
Then “iron deficiency is absolute”

RULE 2
When “TSI < 20%” AND “serum ferritin >= 200ng/dL”
AND “serum ferritin < 800ng/dL”
Then “iron deficiency is relative”
Results – Phase II

- Archetypes elaboration
 - Lookup on available repositories
 - OpenEHR Foundation CKM, NeTHA
 - Reuse of existing archetypes
 - No archetypes were found

- Modeled the following archetypes
 - Hemoglobin, Hematocrit, Ferritin and Transferrin saturation index
Results – Phase III

- Definition and inclusion of rules in a rule-based inference engine and DSS elaboration
 - 4 rules for iron deficiency diagnosis
 - 14 rules for dose recommendation

<table>
<thead>
<tr>
<th>Iron Deficiency Rules</th>
<th>Transferrin Saturarion Index</th>
<th>Transferrin Saturarion Index</th>
<th>Ferritin intervals</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Deficiency</td>
<td>20</td>
<td>20</td>
<td>0.200</td>
<td>Iron Deficiency</td>
</tr>
<tr>
<td>Relative Deficiency</td>
<td>200,800</td>
<td>800</td>
<td></td>
<td>Absolute</td>
</tr>
<tr>
<td>Relative Deficiency (review)</td>
<td></td>
<td></td>
<td></td>
<td>Relative</td>
</tr>
<tr>
<td>No Deficiency</td>
<td></td>
<td></td>
<td></td>
<td>No deficiency</td>
</tr>
</tbody>
</table>

Rule Table Iron Deficiency
- CONDITION: transferrinSaturation < $1
- CONDITION: transferrinSaturation >= $1
- CONDITION: ferritin >= $1, ferritin < $2
- CONDITION: ferritin >= $1
- ACTION: setValue("ironDeficiency", "$param")
Results – Phase IV

- DSS-EHR integration
 - Prototype to simulate a web-based EHR
 - Data from an existing electronic medical record were imported into prototype database
 - Inference engine – JBoss Drools Expert (v. 5.3)
 - Decision table from Phase III
 - Execution of the rules
Results – Phase IV
Results – Phase V

• Phase V – DSS validation
 • Results generated by JBoss Drools Expert were compiled in a report
 • Two ways of validation
 • Previously validated database
 • Validation by a panel of experts
 • Validation by 3 experts
 • 205 patients
 • 617 orientations generated by JBoss Drools Expert
 • 100% agreement
Discussion

• CPG/EHR Incorporation needs representation

• Need to keep CPG data structure and logic

• Suggested approach
 • Archetypes -> data structure representation
 • Rules -> logic representation
Discussion

• Existing studies do not describe how data and rules are extracted from CPG
• Other studies
 • Chen et al, use cases and interviews
 • Marcos and Martínez-Salvador, specific guideline

● Focus on describing a generic method
 • Systematic reproduction in any guideline
 • Modeling of identified data and/or rules according to its characteristics
Discussion

- Manual extraction of information
 - Employment of natural language processing
 - Use of tools to structure CPG information

- Method easy to be applied by clinicians with little knowledge in conditional statements
 - Specifically Phases I, II, and even III
Discussion

- Inference engine is the interface for CPG and EHR
 - Integration of new rules into EHR without changes in the software

- Archetypes facilitate generic extraction
Research group

Professor Dr. Claudia Moro
PhD in Biomedical Engineering

Diego Garcia
Postgraduate student in Health Technology
Systems Analyst

Paulo Cicogna
Postgraduate student in Health Technology
Nephrologist

Daiane Martins Ronchi
Master in Health Technology
Physiotherapist

Professor Dr. Deborah Ribeiro Carvalho
PhD in Applied Informatics
PhD in High-Performance Computing

Lilian Mukai
Postgraduate student in Health Technology
Nurse

Dandara Novakowski Spigolon
PhD student of Health Sciences
Master in Health Technology
Nurse

Hugo Bulegon
Master in Health Technology

Aléx de Oliveira Silva
Undergraduate student in Computing
Engineering
Acknowledgements

• Pontifícia Universidade Católica do Paraná
 • Research support
 • Financial support

• Archetypes research group at PUCPR

• Professor Claudia Moro
Pontifícia Universidade Católica do Paraná
Postgraduate Program in Health Technology
Polytechnic School

Thank you!
Contacts: garcia@garciad.com
c.moro@pucpr.br