Seeking evidence to support usability principles for medication-related CDS functions

Romaric Marcilly, Marie-Catherine Beuscart-Zéphir,
Elske Ammenwerth, Sylvia Pelayo
romaric.marcilly@univ-lille2.fr

22th August 2013
Introduction
Computerized Clinical Decision Supports functions

- **Benefits, for instance**
 - Improve patients’ outcomes [Gary, 2005]
 - Improve prescribing practices [Kawamoto, 2005] [Schedlbauer, 2009]
 - Reduce Adverse Drug Events [Ammenwerth, 2008]

- **However, difficult to implement and accept** [Ash, 2004] due to:
 - Technological issues
 - Parameterization issues
 - Socio-technical issues
 - Usability issues
Usability design principles and CDS functions

- Usability design principles are necessary to help manufacturers develop “usable CDS”
 - General & CDS-specific usability design principles
 - International expert consensus sometimes based on literature

- Lack of scientific evidence to support the principles

- Scientific evidence for usability is needed!
Purpose of this study

- Scientific evidence requires knowing the cause-consequence chain between facts to be able to predict their appearance
 - Randomized Clinical Trials (RCT) to show evidence

- In usability, no RCT: mainly qualitative studies
 - Simple lists of usability flaws: no scientific evidence
 - Capitalization of qualitative scientific data through a framework describing the relations between usability causes and consequences

- Systematic review of the literature supported by a usability framework

- Find usability evidence for CDS usability design principles
Background: usability framework
The “usability framework”

Usability principles: usability design principles based, for instance, on physiological and psychological knowledge e.g. Display measurement units for data entry (prompting) [Scapin & Bastien]
The Usability Framework

Usability flaw: a violation of a usability principle described from the system’s design perspective.

E.g. in a dosage calculation support, no measurement units are displayed next to the weight entry field.
Usage problem: A description of what is experienced by the user.

E.g. The user does not know what kind of data is expected (e.g. pounds or kilograms?).
The Usability Framework

Outcome: manifestation of the consequences of the flaw from a work system point of view
 e.g. the user entered kg instead of lb, the dosage calculated is inappropriate and a wrong dosage may be prepared

- **Usability principles**
 - General / specific

- **Violations in design**

- **Usability flaws**
 - in the IT system

- **IT System in use**

- **Usage problems**
 - Experienced by users

- **Healthcare work system**

- **Outcomes**

- **Severity of the usage problem**
- **Characteristics of the context of use**
- **Resilience capacity of the organization**
Systematic review method
Queries definition

- Supported by terminology and query experts
- In PubMed, Scopus and Ergonomics Abstracts
- Last update: 25th June 2013
Inclusion criteria

- **Facts** (not opinions) on usability flaws are reported

Usability principles
 - General / specific

Violations in design

Usability flaws in the IT system

IT System in use

Usage problems
 - Experienced by users

Healthcare work system

Outcomes

Expert evaluation and cognitive walkthrough Questionnaire and interviews/focus groups

Simulations, user testing (incl. think aloud) and post-implementation surveillance

Socio-technical approach

Impact evaluation with qualitative description
Inclusion criteria

- English/French speaking original publications in peer-reviewed journals and conference proceedings

- To improve the homogeneity, focus on:
 - Alerting/reminders systems in software
 - Supporting the management of e-prescriptions
 - By physicians, pharmacists and nurses.
 - Used in hospital or GP in the internal medicine field
Study flow

1 reviewer

2 reviewers: $K=0.66$

2 reviewers: $K=0.69$

3 reviewers: *Fleiss’ K*.95

1 reviewer

2 reviewers: $K=0.66$

2 reviewers: $K=0.69$

3 reviewers: *Fleiss’ K*.95
Data extraction

- Extraction grid impacted by the usability framework
- Definitions used to extract semantic units about
 - Usability flaws
 - Usage problems (if available)
 - Outcomes (if available)
- Complementary data
 - Description of the evaluated system
Data analysis

- Categorization by two HF experts together

<table>
<thead>
<tr>
<th>Usability Flaws</th>
<th>Usability principles General / specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violations in design</td>
<td></td>
</tr>
<tr>
<td>Usability flaws in the IT system</td>
<td></td>
</tr>
<tr>
<td>IT System in use</td>
<td></td>
</tr>
<tr>
<td>Usage problems Experenced by users</td>
<td></td>
</tr>
<tr>
<td>Healthcare work system</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Categorization according to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usability Flaws</td>
</tr>
<tr>
<td>Usability heuristics/ergonomics</td>
</tr>
<tr>
<td>criteria [Scapin & Bastien, 1997]</td>
</tr>
<tr>
<td>Description of the cognitive</td>
</tr>
<tr>
<td>processes engaged in the decision</td>
</tr>
<tr>
<td>making process</td>
</tr>
<tr>
<td>Usage problems</td>
</tr>
<tr>
<td>Themes emerging from the data</td>
</tr>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td>Themes emerging from the data</td>
</tr>
</tbody>
</table>
Preliminary results
Overall results

Usability principles

General / specific

Violations in design

Usability flaws in the IT system

IT System in use

Usage problems Experienced by users

Healthcare work system

Outcomes

196 items

143 items

51 items

28 complete cause-consequence chains
Overall results: usability flaws

2/3 CDS-specific usability flaws

Usability principles
General / specific

Violations in design

Usability flaws in the IT system

IT System in use

Usage problems
Experienced by users

Healthcare work system

Outcomes

Compatibility, 130

Guidance, 25

Workload, 23

Significance of codes, 8

Consistency, 6

Explicit control, 2

Error management, 1

Adaptability, 1

1/3 general usability flaws
Overall results: usability flaws

CDS-specific usability flaws

Results of the decision making: 9
Tasks and control distribution: 7
Speed of reasoning: 2

Cognitive demands for the decision making process: 51

Information missing (evidence, severity, actions to take, issue etc.)
Alert too early/late

Same alerts reoccurring during the same order

Usability principles
General / specific

Violations in design

Usability flaws in the IT system

IT System in use

Usage problems
Experienced by users

Healthcare work system

Outcomes

Compatibility: 130

With expertise/habits, guidelines, knowledge

Alert's compatibility: 17

Transparency: 20

Overalerting: 24

Tasks and control distribution: 7
Speed of reasoning: 2

Usability problems
Experienced by users

Outcomes

Used data

Healthcare work system

IT System in use

Usability flaws in the IT system

Violations in design

Usability principles
General / specific

Compatibility: 130

With expertise/habits, guidelines, knowledge

Alert's compatibility: 17

Transparency: 20

Overalerting: 24

Cognitive demands for the decision making process: 51

Results of the decision making: 9
Tasks and control distribution: 7
Speed of reasoning: 2

Information missing (evidence, severity, actions to take, issue etc.)
Alert too early/late

Same alerts reoccurring during the same order
Overall results: usage problems

- Usage problems main categories:
 - Emotional reactions
 - Alert fatigue/Desensibilisation
 - Alert ignored
 - Missed alert/information
Overall results: outcomes

- Outcomes main categories:
 - Change in responsibilities
 - Inter-personal strain
 - Activity oriented towards the system instead of the patient
 - Slowing down the prescription process
 - Patient safety
Discussion: the usability framework

- Innovative framework describing the cause-consequence chain of usability flaws
 - Supporting seeking scientific usability evidence

- Advantageous for a systematic review
 - Support the paper selection process
 - Help design the extraction grid
Discussion: evidence for CDS usability design principles?

- Despite reporting biases, cause-consequence relations exist in the CDS literature
 - To establish other relations: inferences based on retrieved data (under progress)

- Generalization process engaged to define corresponding CDS-usability design principles
 - Scientific usability evidence for each principle

- Flaws identified seem in agreement with usability design principles
 - [Horsky, 2012, 2013] [Phansalkar, 2010]

- Using the framework = to go a step further
 - Able to predict the severity of the consequences of the infraction to the usability design principles
Conclusion

- Scientific evidence is necessary for usability!
- A framework has been designed to seek this evidence through informed systematic review
 - Applicable and useful for CDS functions usability

- It should be applied to other kinds of systems and data to extend the scientific evidence for usability and to improve
 - Health Informatics community usability knowledge
 - Medical systems design
 - Ultimately, medical system efficiency and patient safety
Usability principles
General / specific

Violations in design

Usability flaws
in the IT system

IT System in use

Usage problems
Experienced by users

Healthcare work system

Outcomes

Thank You Questions?
romaric.marcilly@univ-lille2.fr