Navigating Longitudinal Clinical Notes With An Automated Method For Detecting New Information

Rui Zhanga, Serguei V. Pakhomova,b, Janet T. Leec, Genevieve B. Meltona,c

a Institute for Health Informatics, \\
b College of Pharmacy, c Department of Surgery, University of Minnesota, Minneapolis, MN, USA
Introduction

- Narratives in EHR systems provide clinicians with extensive patient information
- Clinicians can create redundant information by copying information from previous notes
- Redundant information may decrease healthcare efficiency
 - Increases the cognitive load on clinicians
 - Unidentified erroneous information could have adverse effects on patient safety

Introduction

- Abundant redundant information exists in clinical narrative
 - Inpatient notes (Wrenn, 2010)
 - Outpatient notes (Zhang, 2011&2012)
- Limited investigation into the source of redundant information
 - Can help understand clinicians’ behavior in generating notes
- A need for computational tools
 - Assist clinicians to synthesize complex patients
 - Navigate to notes with more new information

Objectives

- To understand “copy and paste” behaviors of clinicians
- To design an automated method
 - Navigate to notes with new information
 - Investigate new information patterns
Methods: system architecture

Notes

Annotation 1

Models

Text Pre-processing
- Sentence Splitter
- Note Format Handler
- Section Detector

Clinical expert manual annotated reference standard

Inter-rater reliability assessment

Performance Evaluation

Statistical N-gram language Methods
- Classic stopword removal
- TF-IDF stopword removal
- Lexical variation generation
- Heuristic rules

For a given patient m

The kth target note

Apply methods to identify new information in the target note

j previous longitudinal notes

Information navigation

New information pattern

Note: A1, A2, A3, ..., An

Note: B1, B2, B3, ..., Bn

Note: C1, C2, C3, ..., Cn

Note: N1, N2, N3, ..., Nn

...
Methods: data

- U Minnesota Medical Center Fairview Health Services (2005-10)
- Randomly selected 100 patients with angina, COPD (Chronic obstructive pulmonary disease), or diabetes for larger datasets
- Epic EHR system notes (~3000)
Methods: annotation 1

- New and clinically relevant information
- Based on their clinical judgment

Annotate one sample note

Annotate another 10 notes

Annotate 90 clinical notes overall

- Kappa: 0.80
- Percent agreement: 97%

40 for training and 50 for testing the language models
Methods: model to identify new information

For a given patient m:
- The kth target note
- j previous longitudinal notes

Apply methods to identify new information in the target note:
- Classic stopword removal
- TF-IDF stopword removal
- Lexical variation generation
- Heuristic rules

Performance Evaluation

A bigram language model with classic stopword removal, TF-IDF stopword removal, application with lexical variation generation, and the adjustment through heuristic rules.

Accuracy: 0.83
Precision: 0.72
Recall: 0.71
F-Measure: 0.72
Methods: annotation 2

- Without seeing our results
- Two randomly selected patients

- Noted new information for 22-38th notes
- Used to compare results of information navigation

Noted new information for the 21st note

Noted any changes of new information for the 21st note
Methods: new information pattern analysis

Chronologically ordered notes of each patient (n₁, n₂, and nⱼ can be different numbers)

Patients

Build a language model

Predict new information

Calculate new information proportion (NIP)

Number of previous notes to build a model

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arithmetic mean NIP scores

\[
NIP = \frac{\text{# sentences with new information}}{\text{# all sentences per note}}
\]

University of Minnesota
Results: clinicians’ copy & paste pattern

- 55% of information was from the most recent note.
- Additional 11% of information was from the previous 2-10 notes.
- Additional 4% was from the previous 11-20 notes.

The model is described by the equation:

\[Y = -4.51\ln(x) + 44.6 \]

and has an R\(^2\) value of 0.98.
Results: NIP to navigate notes with new information

- Cyclical pattern
- High correlation with human judgment
- Source note of redundant information
Conclusions

• Clinicians copy information from the most recent notes
• New information in longitudinal notes had a logarithmic relationship with the length of historical notes
• NIP helps find notes with clinically relevant information and could be useful to navigate notes
• Further research
 - Develop more robust methods to detect new information
 - Classify types of new information (findings, medications, labs)
Acknowledgements

• Advisors
 ➢ Genevieve Melton-Meaux, MD, MA
 ➢ Serguei Pakhomov, PhD
• American Surgical Association Grant (Melton)
• U.S. NLM Grant (#R01 LM009623-01) (Pakhomov)
• UMN Doctoral Dissertation Fellowship
• Fairview Health Services/UMMC
• Contact Information
 ➢ Rui Zhang, MS
 ➢ zhan1386@umn.edu
Thank You!

Sculpture Garden @ Minneapolis, MN, USA