The Gene Regulation Ontology (GRO): - Design Principles and Use Cases -

Elena BEISSWANGERa, Vivian LEEb, Jung-Jae KIMb, Dietrich REBHOLZ-SCHUHMANNb, Andrea SPLENDIANIc, Olivier DAMERONc, Stefan SCHULZd, Udo HAHNa

aJena University Language and Information Engineering (JULIE) Lab, Jena, Germany
bEuropean Bioinformatics Institute, Hinxton, Cambridge, UK
cLaboratoire d’Informatique Médicale, Université de Rennes 1, Rennes, France
dInstitute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Freiburg, Germany
Gene Regulation and Regulatory Processes

• Gene expression
 – Synthesis of gene products (RNA and proteins)
 – Two steps: transcription and translation
 – Transcription: Gene \rightarrow RNA
 (mediated by transcription factor proteins (TF) that regulate (up / down) the synthesis of RNA by a polymerase enzyme)
 – Translation: RNA \rightarrow protein

• Regulation of Gene Expression
 – Control of the amount of gene products synthesized (at a particular time and under particular extra- and intracellular conditions)
 – Occurs during all steps of gene expression
 – Enables the Gene Regulation and Regulatory Processes
Rationale for a Gene Regulation Ontology

- Well-defined vocabulary for semantic annotations in scientific documents on gene regulation (EU BOOTStrep project)
- Semantically annotated text corpora as prerequisite for supervised machine learning algorithms
- Purpose: automatic population of a knowledge repository on gene regulation
<table>
<thead>
<tr>
<th>Resource with URL</th>
<th>Relevant Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence Ontology (SO) http://sequenceontology.org/</td>
<td>sequence regions and attributes of sequence regions</td>
</tr>
<tr>
<td>ChEBI http://www.ebi.ac.uk/chebi/</td>
<td>molecules of biological interest</td>
</tr>
<tr>
<td>INOH Molecule Role (IMR) http://www.inoh.org/</td>
<td>transcription factors and their functional domains</td>
</tr>
</tbody>
</table>
What's Missing ...

- Principled and expressive representation of gene regulation proper
 - regulatory processes and participants involved (genes, transcripts, proteins)
 - Relationships between processes and participants
 - Formal, computable definitions
 - Common standardized description language (e.g. OWL)
Construction of the GRO

• Manual construction of the foundational structure
 – Integrating basic knowledge from text books and the UMLS

• Extension based on existing OBO ontologies
 – Screening of OBO ontologies (GO, SO, ChEBI, IMR, NCBI taxonomy) for entries related to gene regulation
 – Extraction and integration of these entries in GRO while keeping the references to the sources

• Extension based on domain specific databases
 – Integration of transcription factors entries extracted from the transcription factor database TransFac

• Extension based on literature screening
 – Analysis of 150 Medline abstracts (selected by a MeSH query and additional criteria) with regard to potentially new GRO terms
Size and Structure of the GRO

• Size (gro-v0.3)
 – 433 classes, 457 taxonomic relations
 – 8 relation types (+ inverses)
 – 404 class restrictions

• Bi-partite upper ontology
 – Continuant branch: entities ‘which persist through time’
 • Physical continuant branch: entities having spatial dimension (e.g. gene, regulatory sequence, and protein)
 • Non-physical continuant branch: entities having no spatial dimension (e.g. protein function)
 – Occurrent branch: entities ‘which have temporal parts’
 • e.g. transcription, gene expression, and various regulatory processes

• Represented in OWL DL
Relations in the GRO

- GRO classes highly interlinked by semantic relations
 - `partOf` / `hasPart` relating spatial or temporal parts to the whole
 - protein domain `partOf` protein, transcription initiation `partOf` transcription
 - `fromSpecies` relating species information
 - bacterial RNA polymerase `fromSpecies` bacterium
 - `participatesIn` / `hasParticipant` relating processes and events to the entities involved
 - and sub-relations `agentOf` / `hasAgent`, `patientOf` / `hasPatient`
 - regulation of transcription `hasAgent` transcription regulator
 - `encodes` / `encodedIn` relating genes to proteins
 - `functionOf` / `hasFunction` linking functions to their bearers
 - `hasQuality` specifies qualities inherent in particular entities
 - `resultsIn` / `resultsFrom` identifies the outcome of a process
 - `located-in` / `location-of`
Structure of GRO Classes
Example: Class TranscriptionFactor

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rdfs:comment</td>
<td>A transcription factor that binds to a specific DNA sequence in order to modulate transcription. The transcription factor may or may not also interact selectively with a protein (other transcription factors of cofactors) or protein or macromolecular complex. (modified from [GO:0003700])</td>
</tr>
<tr>
<td>rdfs:label</td>
<td>transcription factor</td>
</tr>
<tr>
<td>synonym</td>
<td>gene regulatory protein</td>
</tr>
</tbody>
</table>

OWL class restriction
Vocabulary for Semantic Annotation of Scientific Documents

• Semantic annotations on two levels:
 1. Annotation of terms denoting continuants (e.g., transcription factor proteins and genes)
 • Vocabulary: terms from the GRO continuant branch
 2. Annotation of regulatory processes / event annotation
 • Much more complex task, requires annotation of continuants (1.)
 • Vocabulary: terms from the GRO occurring branch
 • Participation relations specified for
Characterization of the regulon controlled by the leucine-responsive regulatory protein in Escherichia coli.

The leucine-responsive regulatory protein (Lrp) has been shown to regulate, either positively or negatively, the transcription of several Escherichia coli genes in response to leucine. We have used two-dimensional gel electrophoresis to analyze the patterns of polypeptide expression in isogenic lrp+ and lrp mutant strains in the presence or absence of leucine. The absence of a functional Lrp protein alters the expression of at least 30 polypeptides. The expression of the majority of these polypeptides is not affected by the presence or absence of 10 mM exogenous leucine.
Characterization of the regulon controlled by the leucine-responsive regulatory protein in Escherichia coli.

The leucine-responsive regulatory protein (Lrp) has been shown to regulate, either positively or negatively, the transcription of several Escherichia coli genes in response to leucine. We have used two-dimensional gel electrophoresis to analyze the patterns of polypeptide expression in isogenic lrp+ and lrp mutant strains in the presence or absence of leucine. The absence of a functional Lrp protein alters the expression of at least 30 polypeptides. The expression of the majority of these polypeptides is not affected by the presence or absence of 10 mM exogenous leucine.

transcription factor
ligand (chemical entity)
nucleotide sequence
experimental intervention
regulatory process
transcription
gene expression
• Rules in Semantic Web Rule Language (SWRL) were defined on GRO classes and relations
• Help to refine event classification in text
• Example:
 – Given that a reference to a GeneRegulation event has been identified in text during the annotation step
 – ... and given appropriate other events and participants have been identified
SWRL Rules – an Example

FROM GRO:
- GeneRegulation
 - hasAgent: TranscriptionFactor
 - hasPatient: GeneExpression
- GeneExpression
 - hasPatient: Gene
- TranscriptionRegulation
 - isA: GeneRegulation
 - hasAgent: TranscriptionFactor
 - hasPatient: Gene
- BindingOfTFToDNA
 - hasAgent: TranscriptionFactor
 - hasPatient: RegulatoryRegion
- RegulatoryRegion
 - partOf: Gene

SWRL RULE:
- GeneRegulation(?genreg) ^ hasAgent(?genreg, ?tf) ^ hasPatient(?genreg, ?ge) ^
- GeneExpression(?ge) ^ hasPatient(?ge, ?gene) ^
- BindingOfTFToDNA(?binding) ^ hasAgent(?binding, ?tf) ^ hasPatient(?binding, ?region) ^
- RegulatoryDNARegion(?region) ^ partOf(?region, ?gene)

INFERENCING

TranscriptionRegulation(?genreg)

Color coding:
- event recognition
- entity recognition
- OntologyClass
- ontologyRelation
Availability of GRO

- GRO is freely available
- GRO website:
 - http://www.ebi.ac.uk/Rebholz-srv/GRO/GRO.html
- Access to GRO via the OBO library:
 - http://www.obofoundry.org/
 - (see section 'Other ontologies and terminologies of interest')
- Access to GRO via the NCBO BioPortal:
 - http://www.bioontology.org/ncbo/faces/pages/ontology_list.xhtml
Acknowledgements

The work presented here is part of the BOOTStreep project funded by the European Union (FP6 - 028099)

http://www.bootstreep.eu