Characterizing the Dimensions of Clinical Practice
Guideline Evolution

Jacques Bouauda and Brigitte Séroussib

aMission Recherche en Sciences et Technologies de l’Information Médicale, DSI, AP-HP & INSERM, UMR S 872, eq. 20 ; Paris, France

bDépartement de Santé Publique, Hôpital Tenon, AP-HP & UFR de Médecine, Université Paris 6 & APREC, Paris, France & LIM&Bio, Bobigny, France
Overview

1. Guideline and CDSS update issues
2. Method & Material
 - Characterization of KB evolution
 - KB versions of 2 Bladder cancer CPG revisions
3. Results
4. Discussion and conclusion
Guideline update issues

- Clinical practice guidelines
 - Promotion of “best practices”
 - State of the art: a relative and evolving notion
 - CPG life-cycle

- Guideline-based clinical decision support systems
 - Low impact of textual dissemination
 - Computerized model of CPG content
 - Provide patient-specific recommendations
 - Effective in improving clinician compliance with CPGs

- Building and maintaining CDSS knowledge bases
 - CDSSs need to be updated as their knowledge sources evolve
 - CDSS life cycle
Updating guideline-based CDSSs

- Knowledge acquisition for guideline-based CDSSs
 - From text to a computerized format
 - Guideline knowledge representation formalisms
 - a step towards executable representations
 - Knowledge-centric approaches
 - Document-centric approaches

- Guideline-based CDSS update
 - "From scratch" approaches
 - Considered time consuming
 - Limited reuse
 - Incremental approaches
 - Differential approach
 - Adapted to document-centric approaches
 - The concept of "living guidelines"
Problem statement

- Let v and $v + 1$ the versions of 2 consecutive CPG revisions.
Let v and $v + 1$ the versions of 2 consecutive CPG revisions

The KB model: a set of atomic recommendations $\{R_i\}$
Problem statement

- Let v and $v + 1$ the versions of 2 consecutive CPG revisions
- The KB model: a set of atomic recommendations $\{R_i\}$
- Compare $\{R_i\}_i^v$ vs. $\{R_j\}_j^{v+1}$
 - Set intersection
Let v and $v + 1$ the versions of 2 consecutive CPG revisions

- The KB model: a set of atomic recommendations $\{R_i\}$
- Compare $\{R_i\}_i^v$ vs. $\{R_j\}_j^{v+1}$
 - Set intersection

\[\begin{align*}
 \text{v} && \text{v + 1} \\
 \bigcirc && \bigcirc
\end{align*} \]
Problem statement

- Let \(v \) and \(v + 1 \) the versions of 2 consecutive CPG revisions.
- The KB model: a set of atomic recommendations \(\{ R_i \} \).
- Compare \(\{ R_i \}^v \) vs. \(\{ R_j \}^{v+1} \).
 - Set intersection.

Diagram:

- \(R_i \) in version \(v \).
- \(R_j \) in version \(v + 1 \).
- Commonality between recommendations.

Subsumption relationships.

Assumption: \(R_j \) is an evolution of \(R_i \) if it shares "commonality" with \(R_i \).

Characterize commonality between recommendations.

Bouaud & Séroussi – AP-HP & Univ Paris 6
Problem statement

Let v and $v + 1$ the versions of 2 consecutive CPG revisions

The KB model: a set of atomic recommendations $\{R_i\}$

Compare $\{R_i\}_i^v$ vs. $\{R_j\}_j^{v+1}$

Set intersection
Problem statement

Let \(v \) and \(v + 1 \) the versions of 2 consecutive CPG revisions

The KB model: a set of atomic recommendations \(\{ R_i \} \)

Compare \(\{ R_i \}_i^v \) vs. \(\{ R_j \}_j^{v+1} \)

- Set intersection

Need for constraint relaxation on identity

Assumption:

\(R_j \) is an evolution of \(R_i \) if it shares “commonality” with \(R_i \)

- Characterize commonality between recommendations
- Subsumption relationships
Objectives

Aims

- To characterize formally CPG evolution from a knowledge perspective
- To evaluate the model in a case study
Objectives

Aims

- To characterize formally CPG evolution from a knowledge perspective
- To evaluate the model in a case study

Principles

- Comparison of 2 knowledge bases modelling a CPG and its updated version
 - Identification of evolution patterns
- Quantification of evolution patterns
Knowledge base model and notations

- KB = \{R_i\}
 - A rule-based KB model
 - \(R_i = (S_i, P_i) / S_i \Rightarrow P_i\)

- Knowledge components
 - Decision criteria: \(\{c_n\}\)
 - Tumor grade 1, chemotherapy contra-indicated...
 - Clinical situation: a set of criteria \(S_i = \{c_{i,n}\}_n\)
 - \{Tumor grade 1, prior cystectomy, no recurrence\}
 - Medical actions: \(\{a_n\}\)
 - Transurethral resection (TUR), cystectomy, early post-surgical endovesical instillation (EPSEI)...
 - Action plan: an ordered sequence of actions \(P_i = \{a_{i,m}\}_m\)
 - \{chemotherapy, invasion surveillance\}

- Recommendation identity (\(=\))
 \(R_i = R_j \iff S_i = S_j \land P_i = P_j\)
Definitions

- “Ontological” abstraction ($abst$)
 - A mapping between basic elements and their abstract classes
 - On criteria
 \[abst(\text{prior cystectomy}) = \text{prior surgery} \]
 - On actions
 \[abst(\text{gemcitabin}) = \text{chemotherapy} \]

- Structural subsumption of clinical situations ($subsum$)
 - Implemented by set inclusion
 \[subsum(S_i, S_j) = (S_i \subseteq S_j) \]
 \[subsum((a, b), (a, c, b)) = t \]

- Action plan similarity (sim)
 - Implemented as set identity (no order)
 \[sim(P_i, P_j) = (P_i \subseteq P_j) \land (P_j \subseteq P_i) \]
 \[sim((x, y, z), (z, x, y)) = t \]
Definitions (cont’d)

- Enhanced subsumption (Subsum)
 - Combining subsum and abst
 \[\text{Subsum}(S_i, S_j) = \text{subsum}(\text{abst}(S_i), \text{abst}(S_j)) \]
 \[\text{Subsum}((a', b), (a'', c, b)) = \text{subsum}((A, B), (A, C, B)) = t \]
 with abst(a') = abst(a'') = A ; abst(b) = B ; abst(c) = C

- Enhanced similarity (Sim)
 - Combining sim and abst
 \[\text{Sim}(P_i, P_j) = \text{sim}(\text{abst}(P_i), \text{abst}(P_j)) \]
 \[\text{Sim}((x', y, z), (z, x'', y)) = \text{sim}((X, Y, Z), (Z, X, Y)) = t \]
 with abst(x') = abst(x'') = X ; abst(y) = Y ; abst(z) = Z
Recommendation evolution patterns

- Let $R_i \in \{R\}^v$ and $R_j \in \{R\}^{v+1}$
- Can R_j be derived from R_i?
- Proposition of 7 evolution patterns
 - No change
 - Action plan refinement
 - New action plan
 - Condition refinement
 - Recommendation refinement
 - New practice
 - Unmatched recommendations
Evolution categorization from R_i to R_j

1. if $S_i = S_j$
2. then if $P_i = P_j$
3. then No change
4. else if $\text{Sim}(P_i, P_j)$
5. then Action plan refinement
6. else New action plan
7. else if $\text{Subsum}(S_i, S_j)$
8. then if $P_i = P_j$
9. then Condition refinement
10. else if $\text{Sim}(P_i, P_j)$
11. then Recommendation refinement
12. else New practice
13. else Unmatched recommendation
Evolution categorization from R_i to R_j

1. if $S_i = S_j$
2. then if $P_i = P_j$
3. then No change
4. else if $\text{Sim}(P_i, P_j)$
5. then Action plan refinement
6. else New action plan
7. else if $\text{Subsum}(S_i, S_j)$
8. then if $P_i = P_j$
9. then Condition refinement
10. else if $\text{Sim}(P_i, P_j)$
11. then Recommendation refinement
12. else New practice
13. else Unmatched recommendation
Evolution categorization from R_i to R_j

1. if $S_i = S_j$
2. then if $P_i = P_j$
3. then No change
4. else if Sim(P_i, P_j)
5. then Action plan refinement
6. else New action plan
7. else if Subsum(S_i, S_j)
8. then if $P_i = P_j$
9. then Condition refinement
10. else if Sim(P_i, P_j)
11. then Recommendation refinement
12. else New practice
13. else Unmatched recommendation
Evolution categorization from R_i to R_j

1. if $S_i = S_j$
2. then if $P_i = P_j$
3. then No change
4. else if $Sim(P_i, P_j)$
5. then Action plan refinement
6. else New action plan
7. else if $Subsum(S_i, S_j)$
8. then if $P_i = P_j$
9. then Condition refinement
10. else if $Sim(P_i, P_j)$
11. then Recommendation refinement
12. else New practice
13. else Unmatched recommendation
Evolution categorization from R_i to R_j

1. if $S_i = S_j$
2. then if $P_i = P_j$
3. then No change
4. else if Sim(P_i, P_j)
5. then Action plan refinement
6. else New action plan
7. else if Subsum(S_i, S_j)
8. then if $P_i = P_j$
9. then Condition refinement
10. else if Sim(P_i, P_j)
11. then Recommendation refinement
12. else New practice
13. else Unmatched recommendation
Evolution categorization from R_i to R_j

1. if $S_i = S_j$
2. then if $P_i = P_j$
3. then No change
4. else if $\text{Sim}(P_i, P_j)$
5. then Action plan refinement
6. else New action plan
7. else if $\text{Subsum}(S_i, S_j)$
8. then if $P_i = P_j$
9. then Condition refinement
10. else if $\text{Sim}(P_i, P_j)$
11. then Recommendation refinement
12. else New practice
13. else Unmatched recommendation
Evolution categorization from R_i to R_j

1. if $S_i = S_j$
2. then if $P_i = P_j$
3. then No change
4. else if $\text{Sim}(P_i, P_j)$
5. then Action plan refinement
6. else New action plan
7. else if $\text{Subsum}(S_i, S_j)$
8. then if $P_i = P_j$
9. then Condition refinement
10. else if $\text{Sim}(P_i, P_j)$
11. then Recommendation refinement
12. else New practice
13. else Unmatched recommendation
Evolution categorization from R_i to R_j

1. if $S_i = S_j$
2. then if $P_i = P_j$
3. then No change
4. else if $\text{Sim}(P_i, P_j)$
5. then Action plan refinement
6. else New action plan
7. else if $\text{Subsum}(S_i, S_j)$
8. then if $P_i = P_j$
9. then Condition refinement
10. else if $\text{Sim}(P_i, P_j)$
11. then Recommendation refinement
12. else New practice
13. else Unmatched recommendation
Evolution categorization from R_i to R_j

1. if $S_i = S_j$
2. then if $P_i = P_j$
3. then No change
4. else if Sim(P_i, P_j)
5. then Action plan refinement
6. else New action plan
7. else if Subsum(S_i, S_j)
8. then if $P_i = P_j$
9. then Condition refinement
10. else if Sim(P_i, P_j)
11. then Recommendation refinement
12. else New practice
13. else Unmatched recommendation
Evolution categorization from R_i to R_j

1. if $S_i = S_j$
2. then if $P_i = P_j$
3. then No change
4. else if $\text{Sim}(P_i, P_j)$
5. then Action plan refinement
6. else New action plan
7. else if $\text{Subsum}(S_i, S_j)$
8. then if $P_i = P_j$
9. then Condition refinement
10. else if $\text{Sim}(P_i, P_j)$
11. then Recommendation refinement
12. else New practice
13. else Unmatched recommendation
Comparison of recommendation sets

- Compare $\{R\}^v$ vs. $\{R\}^{v+1}$
- Each R_j^{v+1} is categorized, by comparison with every R_i^v
Comparison of recommendation sets

- Compare $\{R\}^v$ vs. $\{R\}^{v+1}$
- Each R_j^{v+1} is categorized, by comparison with every R_i^v
- Remarks
 - Every *unmatched recommendation* in $\{R\}^{v+1}$ is a new recommendation
 - Every *unmatched recommendation* in $\{R\}^v$ is an obsolete recommendation
Bladder cancer CPGs and KBs

- Bladder cancer management guidelines
 - > 10,000 cases/year – 5th cancer – 3% cancer deaths
 - French Association for Urology

- Two knowledge bases for 2 CDSSs
 - UroDoc-2002 and UroDoc-2004
 - KBs are decision trees (categorization)
 - KBs built independently, with the same methodology

- Decision trees expanded as rule sets
 - A tree path is a rule
Criteria and action comparisons

Shared and specific concepts

<table>
<thead>
<tr>
<th></th>
<th>2002 specific</th>
<th>Identical</th>
<th>2004 specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision variables</td>
<td>8</td>
<td>32</td>
<td>23</td>
</tr>
<tr>
<td>Actions</td>
<td>9</td>
<td>27</td>
<td>22</td>
</tr>
</tbody>
</table>

- Obsolescence: *diffuse CIS* ; *chemotherapy*
- Emergence: *sex* ; *neo-adjuvant chemotherapy*

- 577 2002-recommendations
- 1071 2004-recommendations

<table>
<thead>
<tr>
<th>Pattern</th>
<th>(n)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td>47</td>
<td>4.3%</td>
</tr>
<tr>
<td>Action plan refinement</td>
<td>3</td>
<td>0.3%</td>
</tr>
<tr>
<td>New action plan</td>
<td>40</td>
<td>3.7%</td>
</tr>
<tr>
<td>Condition refinement</td>
<td>49</td>
<td>4.5%</td>
</tr>
<tr>
<td>Recommendation refinement</td>
<td>39</td>
<td>3.6%</td>
</tr>
<tr>
<td>New practice</td>
<td>180</td>
<td>16.7%</td>
</tr>
<tr>
<td>New recommendation</td>
<td>723</td>
<td>66.9%</td>
</tr>
<tr>
<td>Obsolete recommendation</td>
<td>339</td>
<td>58.8%</td>
</tr>
</tbody>
</table>

- 577 2002-recommendations
- 1071 2004-recommendations

<table>
<thead>
<tr>
<th>Pattern</th>
<th>(n)</th>
<th>%</th>
<th>(2004 basis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td>47</td>
<td>4.3%</td>
<td></td>
</tr>
<tr>
<td>Action plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New action plan</td>
<td>3</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td>49</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommendation</td>
<td>39</td>
<td>3.6%</td>
<td></td>
</tr>
<tr>
<td>New practice</td>
<td>180</td>
<td>16.7%</td>
<td></td>
</tr>
<tr>
<td>New recommendation</td>
<td>723</td>
<td>66.9%</td>
<td></td>
</tr>
<tr>
<td>Obsolete</td>
<td>339</td>
<td>58.8%</td>
<td></td>
</tr>
</tbody>
</table>

- 577 2002-recommendations
- 1071 2004-recommendations

<table>
<thead>
<tr>
<th>Pattern</th>
<th>(n)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td>47</td>
<td>4.3%</td>
</tr>
<tr>
<td>(2004 basis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action plan refinement</td>
<td>3</td>
<td>0.3%</td>
</tr>
<tr>
<td>New action plan</td>
<td>40</td>
<td>3.7%</td>
</tr>
<tr>
<td>Condition refinement</td>
<td>49</td>
<td>4.5%</td>
</tr>
<tr>
<td>Recommendation refinement</td>
<td>39</td>
<td>3.6%</td>
</tr>
<tr>
<td>New practice</td>
<td>180</td>
<td>16.7%</td>
</tr>
</tbody>
</table>

- 577 2002-recommendations
- 1071 2004-recommendations

<table>
<thead>
<tr>
<th>Pattern</th>
<th>(n)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change (2004 basis)</td>
<td>47</td>
<td>4.3%</td>
</tr>
<tr>
<td>Action plan refinement</td>
<td>3</td>
<td>0.3%</td>
</tr>
<tr>
<td>New action plan</td>
<td>40</td>
<td>3.7%</td>
</tr>
<tr>
<td>Condition refinement</td>
<td>49</td>
<td>4.5%</td>
</tr>
<tr>
<td>Recommendation refinement</td>
<td>39</td>
<td>3.6%</td>
</tr>
<tr>
<td>New practice</td>
<td>180</td>
<td>16.7%</td>
</tr>
<tr>
<td>New recommendation</td>
<td>723</td>
<td>66.9%</td>
</tr>
</tbody>
</table>

- 577 2002-recommendations
- 1071 2004-recommendations

<table>
<thead>
<tr>
<th>Pattern</th>
<th>(n)</th>
<th>%</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td>47</td>
<td>4.3%</td>
<td>(2004 basis)</td>
</tr>
<tr>
<td>Action plan refinement</td>
<td>3</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>New action plan</td>
<td>40</td>
<td>3.7%</td>
<td></td>
</tr>
<tr>
<td>Condition refinement</td>
<td>49</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Recommendation refinement</td>
<td>39</td>
<td>3.6%</td>
<td></td>
</tr>
<tr>
<td>New practice</td>
<td>180</td>
<td>16.7%</td>
<td></td>
</tr>
<tr>
<td>New recommendation</td>
<td>723</td>
<td>66.9%</td>
<td></td>
</tr>
<tr>
<td>Obsolete recommendation</td>
<td>339</td>
<td>58.8%</td>
<td>(2002 basis)</td>
</tr>
</tbody>
</table>
Discussion

- Increase of the number of recommendations
 - Consistent with document size (from 13 to 40 pages)
 - Same target of CPGs
 - More detailed (axillary invasion)

- Importance of differences
 - Many new 2004 recommendations
 - New notions
 - Many obsolete 2002 recommendations
 - Abandoned notions
 - New contexts

- Limitations of the method
 - Could be extended (relevance?)
 - Only subsumption-based derivations
 - Based on exclusive recommendation set
Conclusion

- A requirement for up-to-date guideline-based CDSSs
- Characterization of evolution patterns
 - Derived recommendations
 - Use in knowledge-centric modelling
 - Why not “Living KBs”?
- Some (open) questions
 - What about CPG updates in other domains, from other authors?
 - Impact of “ontological” evolutions?
 - Reusability: incremental vs. “from scratch” approach?
Thank you
Textual CPG comparison

- Same target, same authors (80%)

CPG structure and volume

<table>
<thead>
<tr>
<th>2002 CPGs</th>
<th>2004 CPGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>toc</td>
<td># columns</td>
</tr>
<tr>
<td>0</td>
<td>Introduction</td>
</tr>
<tr>
<td>I</td>
<td>TNM staging system</td>
</tr>
<tr>
<td>II</td>
<td>Diagnostic recommendations</td>
</tr>
<tr>
<td>1)</td>
<td>Clinical presentation</td>
</tr>
<tr>
<td>2)</td>
<td>Imaging tests</td>
</tr>
<tr>
<td>3)</td>
<td>Urine cytology</td>
</tr>
<tr>
<td>4)</td>
<td>Cystoscopy</td>
</tr>
<tr>
<td>III</td>
<td>Therapeutic recommendations</td>
</tr>
<tr>
<td>1)</td>
<td>Therapies</td>
</tr>
<tr>
<td>2)</td>
<td>Management principles</td>
</tr>
<tr>
<td>2.1</td>
<td>Superficial tumors</td>
</tr>
<tr>
<td>2.2</td>
<td>Invasive tumors (N0.M0)</td>
</tr>
<tr>
<td>2.3</td>
<td>Positive nodes (M0)</td>
</tr>
<tr>
<td>2.4</td>
<td>Metastatic disease</td>
</tr>
</tbody>
</table>