Development and Validation of Strategies to Test for Interoperability of Virtual Patients

Andrzej A. KONONOWICZa, Jörn HEIDb, Jeroen DONKERSc, Inga HEGEd, Luke WOODHAMe and Nabil ZARYf

a Jagiellonian University, Kraków, Poland
b University Clinic of Heidelberg, Germany
c Maastricht University, The Netherlands
d University of Munich (LMU), Germany
e St. George’s University of London, UK
f Karolinska Institutet, Stockholm, Sweden
Virtual Patients

Definition

Virtual Patient
An interactive computer simulation of real-life clinical scenarios for the purpose of medical training, education, or assessment

[Ellaway 2006]

Example: VP Systems of the eViP project

- CAMPUS
- CASUS
- OpenLabyrinth
- Web-SP
VPD: provides the personal and clinical data relevant to the clinical scenario being simulated.

Media Resources: all of the images, animations, videos, audio files and any other digital objects

DAM: expresses the aggregation of VPD and MR elements for exposure through the AM.

AM: encodes what the learner can do and how they engage with the virtual patient.
Premises

• **Application Profile** – optimises one or more specification for the purpose of a given application
 – focus: eViP Profile of MVP

• **Conformance testing**
 – focus: content-level conformance testing
 • interoperable data exchange among applications deployed across collaborating, yet independent enterprises

• eViP conformance levels

• eViP conformance testing suite
Four Levels of Conformance: 1&2

- **First level** - Package
 - Does the package:
 - have the right directory structure?
 - yes
 - contain mandatory files?
- **Second level** – XML/XSD
 - Are the XML files in the packages:
 - well-formed?
 - yes
 - valid?
 - yes
 - containing valid ids as references?
• Third level - **Import**

 • an author obtains a clear benefit from importing the package into the system in comparison with copying the content manually.
 • enough data must be available to enable the author to start working on the case in the new system.
 • The main sections of the VP package are recognized by the target VP system
 • The package should not contain non-referenced items.
Four Levels of Conformance: 4

• Third level - **Runtime**

• No case-related data is lost while importing the package.
• The way the data is displayed, reflects the main path as it was presented in the original system. The storyline of the case remains consistent.
• The educational value is retained.
• The learning objectives planned for the case in the original system are also achievable in the target system.
Conformance testing suite #1

- **App#1:** by Heidelberg University (HD)
 - XSLT conformance suite
 - currently 20 tests implemented
 - XML or HTML interface
 - JRE 1.6+ required
 - LGPL licence
 - Available at

```
DAMNodeItem with wrong references in ItemPath
DAMNode-ID: DAM_node_21965#164 (wrong id: VPD_biochemistry_results)
```
Conformance testing suite #2

- App#2: by Karolinska Institutet (KI)
 - HTML interface, JRE required
 - Open source licence
 - Available at http://code.google.com/p/mvptools_
Conclusions

- eViP conformance suite:
 - four successive validation levels
 - testing of the first two levels was automated by two conformance suites
 - remaining two levels could not be realized without human intervention, due to a high semantic level
2nd International Conference on Virtual Patients and MedBiquitous Annual Conference

Save the date
26th - 28th April 2010
County Hall
London, UK

Visit the website for more information regarding abstract submission:
www.medbiq.org/icvp

2nd ICVP and MedBiquitous Annual Conference
co-hosted by:

St. George’s University of London