Assessing Importance of Dietary Data in Anticoagulation Treatment

Peter Brønnum Nielsen
M.Sc. BME, PhD fellow
Department of Health Science and Tech.
Aalborg University
Oral Anticoagulation Treatment (OAT)

• People with increased risk of thrombosis
 o Mechanical heart valve replacement
 o Deep Venous Thrombosis (DVT)
 o Atrial fibrillation
 o Pulmonary embolism

• Current patient figures
 o DK 100.000 patients\(^1\) (2% of population)
 o Expected to rise

Management of daily oral intake of vitamin K antagonists (warfarin)

Monitoring of INR - *International Normalized Ratio*

Beneficial balance between clotting and tendency to bleed

Affected by dietary vitamin K^2^

Slow-acting physiological system

• Conventional treatment
 o Physician managed
• Partly managed by patient
 o Patient self-testing
 o Patient self-management

• Patients have to comprehend:
Self-management and self-testing of OAT

• **Benefits**
 - Cost-effectiveness
 - Clinical effectiveness
 - Reduce frequency of ambulatory visits
 - Increase quality of life for OAT patients

• **Risks**
 - Potential lethal drug
 - Biological variability affecting INR
Summary of challenges

- Medication errors can cause death
- INR values are affected by biological variability as dietary vitamin K

Utilizing vitamin K information when prediction INR values
Methods

- Metabolic modelling
- Collection of data from five patients in “normal, everyday setting”
- Data parameters:
 - INR
 - Warfarin
 - Vitamin K
 - Others
Data collection protocol

• Cooperation with highly specialized ambulatory (Medicinsk Ambulatorium, Brædstrup Sygehus)
• Daily scheme to be filled for one month
• Mail correspondence once a week

<table>
<thead>
<tr>
<th>No. of days</th>
<th>INR</th>
<th>TTR</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>27,2</td>
<td>2,5</td>
<td>83,7%</td>
</tr>
</tbody>
</table>

Indications for OAT: Heart valve replacement, DVT, or atria fibrillation. Abbreviations: TTR = Time in Therapeutic Range.
• Already existing model3 expanded
• Break down into compartments
 o Warfarin
 o Coagulation factors
 o Vitamin K
• Predict future INR values

Warfarin modelling

- Warfarin modelled as single compartment
 \[W(t) = W(0) \cdot e^{-k \cdot t} \]

- Effect of warfarin on coagulation factors
 \[\frac{dF}{dt} = w \cdot F_{syn} - F_{deg} \quad w = 1 - \tanh(W(t) \cdot warfsens) \]
Coagulation factors
• Modelled effect of vitamin K intake upon INR values

4. Schugers LG., Blood, 2004
Model summary

Mathematical overview of model

1. \(\text{INR}(t) = 1 + (\sum [a_i((100-F_i)/100)^{S_i}] - \text{VitK}) \)

2. \(\frac{dF_i}{dt} = w \cdot F_{\text{syn}} - F_{\text{deg}} \)

3. \(w = 1 - \tanh(W(t) \cdot \text{warf-sens}) \)

4. \(W(t) = W(0) \cdot e^{-(k) \cdot t} \)
Model predictions
Model prediction results

![Graph showing INR Root Mean Square error over days with and without vitamin K information. The graph compares two lines: one for predictions without vitamin K information and another for predictions with vitamin K information. The y-axis shows the INR Root Mean Square error ranging from 0 to 0.6, and the x-axis represents days from 0 to 7. The graph illustrates the improvement in prediction accuracy when vitamin K information is included.]
Model prediction results

\[
\text{Error}_{\text{(without VK)}}^2 = \text{Error}_{\text{(with VK)}}^2 + VK_{info}^2
\]

\[
VK_{info} = \sqrt{\text{Error}_{\text{(without VK)}}^2 - \text{Error}_{\text{(with VK)}}^2}
\]
Model prediction results

![Graph showing model prediction results with different data conditions.](image)
Results for vitamin K rich data
Discussion

• Pros
 o Decision support for management of OAT patients
 o Help to avoid oscillating INR values
 o Opportunity to raise patient’s awareness

• Cons
 o Burden of data collection
 o False or incomplete data pose a potential risk
Thank you for listening

Peter Brønnum Nielsen
M.Sc. BME, PhD fellow
Department of Health Science and Tech. Aalborg University
E-mail: pbn@hst.aau.dk