Network analysis of possible anaphylaxis cases reported to the US Vaccine Adverse Event Reporting System after H1N1 influenza vaccine

Taxiarchis Botsis1,2 & Robert Ball1

1Center for Biologics Evaluation and Research (CBER), U.S. Food and Drug Administration
2Department of Computer Science, University of Tromsø, Tromsø, Norway

MIE 2011
Oslo, Norway
Vaccine Adverse Event Reporting System (VAERS)

- VAERS stores adverse events (AEs) reported by:
 - health care providers
 - vaccine recipients
 - manufacturers

- Well-trained nurses code these reports:
 - using the Medical Dictionary for Regulatory Activities (MedDRA) and
 - assign preferred terms (PTs) that represent the AEs described in the narratives.
Study hypothesis

- Identify patterns and
- Detect safety signals

by applying **Network Analysis** to VAERS
Methods: Dataset

- 6034 VAERS reports for H1N1 vaccine (November 22, 2009-January 31, 2010)
- 237 possible anaphylaxis reports
- Anaphylaxis: acute allergic reaction after vaccination
- Dataset of 237 reports used to identify patterns of PTs related to anaphylaxis
Methods: Network Analysis

Report_1= [VAX1 VAX2 PT1 PT2 PT3]

decomposed to combinations of:

VAX1-PT1, VAX1-PT2, VAX1-PT3,

VAX2- PT1, VAX2- PT2, VAX2- PT3

And

VAX1-VAX2

And

PT1- PT2, PT1- PT3, PT2-PT3

<table>
<thead>
<tr>
<th></th>
<th>PT1</th>
<th>PT2</th>
<th>PT3</th>
<th>VAX1</th>
<th>VAX2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAX1</td>
<td>16</td>
<td>33</td>
<td>5</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>VAX2</td>
<td>4</td>
<td>10</td>
<td>5</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>PT1</td>
<td>0</td>
<td>12</td>
<td>10</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>PT2</td>
<td>12</td>
<td>0</td>
<td>9</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>PT3</td>
<td>10</td>
<td>9</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

VAX1, VAX2: Vaccines
PT1, PT2, PT3: MedDRA Preferred Terms (PT) representing adverse events
Methods: Network construction

- **Nodes** the PTs and vaccines
- **Edges** their interconnections
- **Edge weight** the number of occurrences for each tie
Methods: Network reduction

Application of the ‘islands’ algorithm* to anaphylaxis network:
- identifies all the maximal islands within a predefined node interval for an edge weight threshold
And combine it with:
- triangular weight – TW (= number of triangles each edge of the original network is contained).
- TWs emphasize multiple interactions, filter out weak connections and reveal the patterns.

Results: Anaphylaxis network

N=301 nodes

What a mess!
Results: Reduced network

N=30 nodes

Brighton Collaboration Criteria
Summary

- Network analysis identifies patterns related to adverse events after vaccination\(^1\)

- Limitations:
 - Statistical framework of network analysis
 - Retrospectively collected dataset

- Future goals:
 - Evaluation of other approaches for network reduction and
 - Application to prospectively collected data for prediction purposes.

\(^1\)R. Ball and T. Botsis, Can network analysis improve pattern recognition among adverse events following immunization reported to VAERS? *Clinical Pharmacology & Therapeutics*. 2011 Aug;90(2):271-8.
Acknowledgements

- We thank the Medical Officers at FDA who evaluated the reports and those who reported them.
- Research Participation Program, Center for Biologics Evaluation and Research, Oak Ridge Institute for Science and Education.