Creating a magnetic resonance imaging ontology

Jérémy Lasbleiz1,2, Régis Duvaufier1, Hervé Saint-Jalmes2,3, Anita Burgun1

1 Inserm UMR 936 Modélisation conceptuelle des connaissances biomédicales
2 Laboratoire de Traitement du Signal et de l’Image; INSERM UMR642 Université de Rennes 1
3 Rennes, FranceCRLCC; Centre Eugène Marquis; Rennes

Presenter and contact: jeremy.lasbleiz@gmail.com
Context

• MRI:
 – The most versatile diagnostic imaging technic
 – Wide range of vocabulary (semantic interoperability)

• Ontology
 – Web semantic
 – allows Semantic interoperability
 – Already used in a radiological context

- DICOM standard for communication

but not for MRI
study

parameters -> T1, T2, diffusion sequence and medical interpretation of MRI, technical data are

Goal => Create ontology which gives informations for MRI interpretation, extracted from DICOM headers to help radiologists for MRI interpretations
Example

- What are those sequences?
Material and Method

• Domain analysis
 – Analyzing DICOM standard
 – Analyzing DICOM headers of MRI exams
 – Knowledge coming from JEMRIS (MRI simulator)

High concepts needed to be relevant for radiologists
 • Sequence: set of preselected RF occurring in a magnetic field
 • Parameters: technical features that influence MRI results
 • Sequence results: Contrast imaging T1, T2…
Material and Method

- Create the ontology using Protégé 4 owl2
 - Taxonomy
 - Relations
 - Formal definitions with quantitative data (owl2)
- Ontology had been Validated with DICOM headers analysis
 - extracted thanks to OSIRIX
Results
Sequences

The sequences taxonomy free ourselves from constructors terminology

Coherent Gradient Echo

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elscint</td>
<td>F SHORT</td>
</tr>
<tr>
<td>Fonar</td>
<td>Field Echo</td>
</tr>
<tr>
<td>GE</td>
<td>GRASS, FGR, FMPGR</td>
</tr>
<tr>
<td>Hitachi</td>
<td>Rephased SARGE, GFEC</td>
</tr>
<tr>
<td>Philips</td>
<td>FFE</td>
</tr>
<tr>
<td>Picker</td>
<td>FAST</td>
</tr>
<tr>
<td>Siemens</td>
<td>FISP</td>
</tr>
<tr>
<td>Toshiba</td>
<td>Field Echo</td>
</tr>
</tbody>
</table>

MIE, Oslo 30/08/2011
MD J. LASBLEIZ University of Rennes 1
France
Results
Parameters and Sequence goals

• Parameters
 – Contrast / Resolution/ are Specific of the sequence Goal

• Sequence goal
 – Calibration Sequence
 – Localisation Sequence
 – ContrastSequence (T1, T2, Proton Density, T2 star)
 – Spectroscopy
 – Perfusion Imaging
 – MagneticResonanceAngiography
 – DiffusionImaging
Results

Relations and Formal

- Relations: are to make the linkage between concepts and give a formal definition
 - Sequence
 - Technical Parameters
 - Sequence

- For example **Spin Echo T2 weighted sequence (definition)**

 Some ((RT and (Has_Unit some milisecond (Has_Value some float [>=2000])) and (ET and (Has_Unit some milisecond and ()))) and)
Results validation

- DICOM tags had been added

Spin Echo (0018,0020)
RT (0018,0080) > 2000ms
Spin Echo T2 weighted sequence

MIE, Oslo 30/08/2011
MD J. LASBLEIZ University of Rennes 1 France
Discussion

• This applicative ontology is a good representation of MRI sequences

• During the ontology validation we had to face to problems:
 – DICOM header filling defects
 • Body part examined is almost never mentioned
 – Pb for T1 and T2 calculation / security
 • Sequence names are located into different DICOM tags
 (0018,0020; 0018,0024 (Siemens); 0018,0023 (General Electric)….)

MIE, Oslo 30/08/2011 MD J. LASBLEIZ University of Rennes 1 France
Conclusion

• The need of semantic interoperability for MRI is obvious

• Difficulties to make an automatic applicative ontology because of missing informations in DICOM headers (could be solved after obtaining DICOM tag locations from constructors)

• **Next step:** to introduce an automatic tool for PACS