Facilitating the Iterative Design of Informatics Tools to Advance the Science of Autism

David R Kaufmana, Patrick Cronina, Leon Rozenblitb, David Voccolab, Amanda Hortonb, Alisabeth Shinea, And Stephen B Johnsonb

a Department of Biomedical Informatics, Columbia University, New York

b Prometheus Research, LLC, New Haven, CT, USA
SFARI Base

• Simons Foundation Autism Research Initiative (SFARI) established
 – a permanent repository of phenotypic and genetic data set from 2,700 families
 – each of which has exactly one child affected with ASD

• SFARI Base, a web-based platform developed in collaboration with Prometheus Research LLC
 – Provides access to scientific data
 – Information management and analytic tools to advance the science of autism
Data Dig

- Scientific investigators
- Research coordinators
- Data managers
- Autism data curators
Select Columns

Choose a group to specify the list of columns that appear below.

Light grey bars indicate Variable Tags. Clicking a light grey bar will narrow the list of columns that appear below.

Grey numbers indicate how many variables fall under each Tag category

Dark grey bars indicate Variables. Clicking a dark grey bar will cause the corresponding variable to return in your query result.
Mental Model of Query Process

Males age 4 to 12 years of age with significant language delays as measured by different variables
Objectives

• Usability evaluation/iterative design
• Characterize high yield problems
• Identify tractable changes to Data Dig
 – Greatly enhance the user experience
• Provide resources for users to formulate queries with relative ease
• Comprehensible feedback/output of search
• Consistency, navigation, feedback and enhanced functionality
Methods

A. Cognitive walkthrough
B. Heuristic evaluation
C. Usability testing
D. Web-based survey of scientists
E. Participant design study
F. Observations of autism researchers in-situ
Analysis

• Cognitive Walkthrough
 – Two analysts
 – Nielsen’s Usability Heuristics (3 raters)
 – Ennis and Sutcliffe Cognitive Model of IR
 • Domain and device knowledge

• Usability Testing
 – Recorded 3 users with Morae
 – 10 queries of varying complexity drawn from journal articles on autism
 – Identified issues from recording
Cognitive Walkthrough

• Task-analytic method for understanding task complexity
 – Goals /Subgoals for each task
 – Action/step
 – Necessary knowledge
 – Feedback (ie, what’s visible on the display)
 – Potential problems/cognitive demands

• Task complexity
 – number of actions
 – number of screen transitions
 – time needed to complete a task and
 – required chunks of knowledge
Usability Testing

• Task: Formulate queries to answer problems of varying complexity
 1. How many probands in the database?
 2. Autism Diagnostic Interview (ADI-R) total score?
 3. Is there data on the proband’s birth?
 Head circumference and weight at birth
 Proband born vaginally or by a C-section?

• Think-aloud and video-capture using Morae
Moraе Capture of Data Dig

Step 1 Choose a group to explore, navigate and filter measure variables, and click to select what you want in your query.

Group: All-Item-Level-Variables

All-Item-Level-Variables -> Pregnancy

- Birth-Order 6
- Demographics 2
- Diet 30
- Illness 272
- Medical 1145
Results Summary

- Users able to answer most queries with some help from the moderator
- Numerous difficulties learning how to master the different elements of the system
- More than 50 usability problems
 - relatively minor to more serious ones impeded effective and efficient use of the tool to answer queries
- Problems with greatest frequency:
 - Difficulty understanding meanings of variables
 - filter categories correctly, use the Boolean filter
 - correctly interpret the feedback provided by the system
- Difficulty forming a mental model of the underlying database
 - Precluded them from making informed navigation choices while formulating queries
Feedback: There is No Visual Cue to Mark Selected Variables in Step 1

• Description
 – Selected variables lack cue

• User Data
 – Variables were missed
 – Unclear on selection

• Potential Solution
 1. Checkbox
 2. Disappearing Variables
 3. Shading
Feedback: There is No Visual Cue to Mark Selected Variables in Step 1

Step 1 Choose a group to explore, navigate and filter measure variables, and click to select what you want in your query.

Group: Core-Descriptive-Variables

Core-Descriptive-Variables ➔ Comorbidity

Select the variables you want to include in your query.

Step 2 Optionally, add filter criteria.
Limited Functionality: Inability to Select Multiple Variables

- **Description**
 - Only select variables individually

- **User Data**
 - All users desired capability

- **Potential Solution**
 1. “Select All” button
 2. Highlight & Drag
Limited Functionality: Inability to Select Multiple Variables

Step 1. Choose a group to explore, navigate and filter measure variables, and click to select what you want in your query.

Group: All-Variables-by-Instrument

Step 2. Optionally, add filter criteria.

Step 3. View query results.
Limited Functionality: Boolean Filter Issues

• Description
 – Functionality is lacking

• User Data
 – Ignored Boolean filter entirely
 – 1 of 3 limited use

• Potential Solution
 1. Improve functionality
 2. Increase constraints
 3. Eliminate & Replace with checkbox
Summary

• Documented a range of usability problems
• Data Dig presented challenges to new users (lacking either device or domain knowledge)
 – Difficulty formulating a mental model
• Identified tractable changes and offered solutions when possible
 – Continuous iteration with marked improvement
Conclusions

• Clinical research informatics provides new tools to advance clinical science and practice
• Lack a stable interaction paradigm for enabling scientific researchers and other users to access and analyze large data sets
 – Complexity and learning curves
• Significant challenges as well as opportunities for human-computer interaction researchers to contribute to the advancement of effective and enabling tools
 – Advance the science of autism and other disorders