Safety of Health Information Technology (HIT): Identifying and Mitigating Risks

supported by
EFMI Working Group Human
and Organizational Factors of Medical Informatics

Farah Magrabi, Jos Aarts
Marie-Catherine Beusc​art-Zéphir, Christian Nøhr
Agenda

1. Introduction + presentations (30 min)
 – Towards safe systems: Jos Aarts
 – Using incident reports to identify HIT problems: Farah Magrabi
 – User centered design: Marie-Catherine Beuscart-Zéphir, Christian Nøhr

2. Group work (50 min)
 – Question 1: Identify national and international initiatives to improve the safety of HIT?
 – Question 2: What should be reported about a HIT incident?

3. Summary and next steps
Towards safe systems

Dr Jos Aarts
Erasmus University Rotterdam
Oslo, MIE2011
IT as a complex sociotechnical system

Harrison, Koppel, Bar-Lev, 2007
Unintended consequences of HIT: a temporal analysis

- Implementation of CPOE at HUP
 - TDS (Eclipsys) 7000 system
 - Eclipsys SCM
- 2002-2003 study (Koppel et al, 2005)
- 2004 study (Koppel, unpublished)
- 2011 study (Kraaijenbrink, Koppel, Aarts)
Results

• 2002-2003: 22 sources of errors
• 2004: some addressed, some remained
• 2011: slight improvement, new sources emerged
 – Workload
 – Alert fatigue
 – Using filters
 – Reliance on pharmacy
Pulling findings and ideas together

Complex sociotechnical systems

- source of risks
 - organizational purpose (software) development errors
 - integration errors
 - implementation errors
 - human interaction errors

Barriers to safe systems
- lack of regulation
- poor oversight
- legal contracting
- proprietary software and standards
- lack of reporting
- lack of organizational learning

Mitigating risks
- human resilience
 - workarounds
 - organizational commitment
- training
- oversight
- reflective design and implementation methodologies
Using incident reports to monitor the safety of HIT

Dr Farah Magrabi
Centre for Health Informatics
Australian Institute for Health Innovation
University of New South Wales, Sydney, Australia
Identifying & mitigating HIT risks

- Identify hazards
- Analyse & prioritise hazards
- Mitigate risks
- Evaluate effectiveness of risk reduction
- Incident reporting
- Human centered design
Reports are useful to examine how & why HIT incidents occur

• **IT systems failed.** We rely heavily on IT systems to retrieve radiology, pathology results, ordering of tests and radiology. Hard copies of ultrasound scans not provided. Without functioning IT we could not access results.

• **CPOE system required users to scroll through 225 options** on a drop down menu. Options arranged in a counterintuitive alphabetical order, and resulted in a patient being **overdosed** with four times more digoxin than required
Analyses of incidents

- Incidents of a common nature are grouped
- **WHO International Classification for Patient Safety (ICPS)**

 - 13 Healthcare Incident Types
 - e.g. “clinical process/procedure”, “medication/IV fluid”

- Existing classifications, including ICPS, fall short with respect to HIT incidents.
Analyses of HIT incidents

<table>
<thead>
<tr>
<th></th>
<th>Advanced incident management system (AIMS)</th>
<th>US FDA MAUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporters</td>
<td>Health professionals</td>
<td>Users, vendors</td>
</tr>
<tr>
<td>No. of reports</td>
<td>43,000</td>
<td>900,000</td>
</tr>
<tr>
<td>Timeframe</td>
<td>24 months</td>
<td>30 months</td>
</tr>
<tr>
<td>Years</td>
<td>2003-05</td>
<td>2008-10</td>
</tr>
<tr>
<td>IT incidents</td>
<td>99 (0.2%)</td>
<td>436 (0.1%)</td>
</tr>
</tbody>
</table>

Magrabi et al. JAMIA 2010
Magrabi et al. JAMIA (accepted)
Classification: 34 HIT problems grouped into 5 types

1. Information Input
2. Information Transfer
3. Information Output
4. General technical
5. Contributing factors

Magrabi et al. JAMIA 2010
Magrabi et al. JAMIA (accepted)
Type of HIT problems

<table>
<thead>
<tr>
<th>Category</th>
<th>MAUDE (n=712)</th>
<th>AIMS (n=117)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information input</td>
<td>9</td>
<td>31</td>
</tr>
<tr>
<td>Information transfer</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Information output</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>General technical</td>
<td>60</td>
<td>24</td>
</tr>
<tr>
<td>Contributing factors</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
Consequences of HIT incidents

- Harm to patient: MAUDE (n=432) = 11, AIMS (n=68) = 3
- Near miss: MAUDE (n=432) = 1, AIMS (n=68) = 4
- Noticeable consequence, no harm: MAUDE (n=432) = 10, AIMS (n=68) = 38
- No noticeable consequence: MAUDE (n=432) = 32, AIMS (n=68) = 34
- Hazard: MAUDE (n=432) = 46, AIMS (n=68) = 13
- Complaint: MAUDE (n=432) = 6, AIMS (n=68) = 1
- Loss: MAUDE (n=432) = 1, AIMS (n=68) = 1
AIMS: impact on clinical work

Machine

- 55% of problems-machine related.
- Delays in patient care tasks, a major consequence (70%).

Human

- 45% of problems related to human-computer interaction.
- Rework a major consequence (78%).
FDA: Four types of software problems

1. Functionality
 – task/workflow fit
 – usability, interactions

2. Local configuration (e.g. rules for decision support)

3. Interface with devices (e.g. PACS with imaging device)

4. Network configuration (e.g. local network settings)
Question 1: Identify national & international initiatives to improve HIT safety? What more to be done?

- Certification
- Health IT Policy Committee
- NHS
- Regulation
- Design standards
- CCHIT
- Nehta
- Systems safety engineering
Question 2: What should be reported about a HIT incident?

• Key information required?

• Free text or fixed fields or both?

• How to elicit usability problems? Poor fit to tasks?
Summary & next steps

• Status paper summarising workshop

• Catalog of HIT safety initiatives

• Improve reporting of HIT incidents
 – Categories basis for a new incident type in the WHO ICPS

• Improve methods for analysis
 – manual
 – automated

• To participate
 – email Farah Magrabi f.magrabi@unsw.edu.au