Usability evaluation of a guideline implementation system for cardiac rehabilitation: Think aloud study

Mariëtte VAN ENGEN-VERHEUL, Linda PEUTE, Ellen KILSDONK, Niels PEEK, Monique JASPERS

Mariëtte van Engen-Verheul
m.m.vanengen-verheul@amc.uva.nl
www.cardss.nl

Department of Medical Informatics
Academic Medical Center, Amsterdam
The Netherlands
Guideline implementation systems

Knowledge on best practices

Clinical practice guidelines

Data entry

Clinical decision support (CDS) systems

Human factors issues

Clinical decision making

Quality of care
Setting

• Disease management
 – Cardiac rehabilitation (CR) needs assessment procedure

• Extensive data collection during 30 to 60 min patient interview
 – Performed by specialized rehab nurse

• Multidisiplinary CR guidelines include paper-based clinical algorithm
Question 2: Is there a disruption/potential problem with the psychological functioning of the patient?

2a. Is there a disruption or potential problem with the emotional functioning of the patient?

Result MacNew Quality-of-life questionnaire: dimension emotional functioning

Disruption or potential problem with emotional functioning of the patient
- Severe: ≤ 2nd decile
- Moderate: ≥ 3rd and ≤ 6th decile
- None: ≥ 7th decile

Severe

Goals:
(4) Regain emotional balance
(5) Learn to cope with cardiac disease in a functional manner

Intervention
Individual screening by a psychologist and/or a social worker. He or she determines further interventions.

Moderate

Goals:
(4) Regain emotional balance
(5) Learn to cope with cardiac disease in a functional manner

Intervention
Education followed by lifestyle change counseling and/or relaxation therapy

None

No intervention related to emotional functioning

Introduction

Overview sections

Section: NAP

Sub-sub-sections: Items within the domain Social condition

Sub-section: Data entry domains

Next button: Fixes predefined data entry order
Study aim

• To evaluate the system’s
 – Model of predefined data entry order
 – Task efficacy (completeness)
 – Task efficiency (mouse clicks)

Design

• Think aloud usability protocol
• 7 professional end-users from 5 clinics
• 2 scenarios: fictitious and real patiënt
• 7 tasks (with 41 subtasks) based on the guidelines
Results – deviation from predefined next system step (example trajectory fictitious patiënt)
Results – deviation from predefined next system step (example trajectory real patiënt)
Results – task completion and mouse clicks

<table>
<thead>
<tr>
<th></th>
<th>Task 1</th>
<th>Task 2</th>
<th>Task 3</th>
<th>Task 4</th>
<th>Task 5</th>
<th>Task 6</th>
<th>Task 7</th>
<th>AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td># subtasks per task / # mouse clicks minimally required</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>85</td>
<td>59</td>
<td>23</td>
<td>29</td>
<td>40</td>
<td>54</td>
<td>339</td>
</tr>
</tbody>
</table>

Fictitious patient case

<table>
<thead>
<tr>
<th></th>
<th>Task completion</th>
<th>Average subtask completion</th>
<th>Average mouse clicks needed for completed subtasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/7</td>
<td>96%</td>
<td>151%</td>
</tr>
<tr>
<td></td>
<td>0/7</td>
<td>83%</td>
<td>114%</td>
</tr>
<tr>
<td></td>
<td>6/7</td>
<td>98%</td>
<td>109%</td>
</tr>
<tr>
<td></td>
<td>4/7</td>
<td>89%</td>
<td>164%</td>
</tr>
<tr>
<td></td>
<td>2/7</td>
<td>73%</td>
<td>240%</td>
</tr>
<tr>
<td></td>
<td>1/7</td>
<td>70%</td>
<td>131%</td>
</tr>
<tr>
<td></td>
<td>1/7</td>
<td>75%</td>
<td>182%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>156%</td>
</tr>
</tbody>
</table>

Real patient case

<table>
<thead>
<tr>
<th></th>
<th>Task completion</th>
<th>Average subtask completion</th>
<th>Average mouse clicks needed for completed subtasks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4/7</td>
<td>75%</td>
<td>145%</td>
</tr>
<tr>
<td></td>
<td>0/7</td>
<td>62%</td>
<td>108%</td>
</tr>
<tr>
<td></td>
<td>2/7</td>
<td>61%</td>
<td>139%</td>
</tr>
<tr>
<td></td>
<td>2/7</td>
<td>71%</td>
<td>131%</td>
</tr>
<tr>
<td></td>
<td>0/7</td>
<td>51%</td>
<td>194%</td>
</tr>
<tr>
<td></td>
<td>0/7</td>
<td>59%</td>
<td>117%</td>
</tr>
<tr>
<td></td>
<td>1/7</td>
<td>75%</td>
<td>115%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>63%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>136%</td>
</tr>
</tbody>
</table>
Discussion — summary

• Users deviated from predefined data entry order
• Users could not complete all tasks as defined in the guidelines
• Users needed to many navigation actions

Advice to system developers

• The system should be better adapted towards end-users’ mental model (= towards their expectancies)
 – E.g.: more flexible and transparent data entry
Discussion — lessons for system development

• Implementation of a paper-based guideline in software is a challenge
 – Local, compliant adaptations should be supported (e.g. different data entry order)
 – Develop in short cycles, with early involvement of end-users

• Ultimately this leads to more efficient and effective system use

Quality of care
Thank you for your attention!
Extra results – deviation from predefined data entry order

• Overall: 41% deviation
 – Fictitious patient: 38%
 – Real patiënt: 45%

• Task completion
 – On average: each 40 deviations were associated with 1 task less being complete

• Mouse clicks
 – On average: each deviation was associated with 6 mouse clicks