Carbon fibre prostheses and running in amputees: A review

Lee Nolan

Laboratory for Biomechanics and Motor Control, Karolinska Institutet and The Swedish School of Sport and Health Sciences, GIH, Box 5626, 114 86 Stockholm, Sweden
Department for Rehabilitation, School of Health Sciences, Jönköping University, Jönköping, Sweden
<table>
<thead>
<tr>
<th>Publikationstype</th>
<th>Evidens</th>
<th>Styrke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metaanalyse eller systematisk overigt over randomiserede forsøg</td>
<td>Ia</td>
<td>A</td>
</tr>
<tr>
<td>Randomiseret klinisk forsøg</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>Kontrolleret, ikke-randomiseret forsøg</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>Kohorteundersøg-else. Diagnostisk test (direkte diagnostisk metode)</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Case-control undersøgelse. Diagnostisk test (indirekte Nosografisk metode)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beslutningsanalyse. Deskriptiv undersøgelse.</td>
<td>IV</td>
<td>D</td>
</tr>
</tbody>
</table>

Kilde:

- *Foot and Ankle Surgery* er publiseret af Elsevier for European Foot and Ankle Societies
- 10 publikationer, hvoraf 7 er med proteser
Introduktion

• Sport and development – the introduction for carbon fiber
• Reduce disadvantage -> mechanical advantage
Mål for artiklen

• This review will present what is currently known about carbon prostheses and their effect on the running technique of transtibial amputees.
• Headliners:
 – Power output and energy return
 – Shape and stiffness
 – Centre of mass and inertia
 – Kinematic and kinetic patterns of running
Fig. 2. The different sprint foot designs: (A) Cheetah (Össur), (B) flex-sprint (Össur), (C) flex-run (Össur), (D) sprinter (Otto Bock), and (E) C-sprint (Otto Bock).
Indhold

• Power output and energy return

 – A study measuring dynamic hysteresis has been conducted. This showed a Cheetah foot (Össur, Reykjavik, Iceland) to have 63% energy efficiency [4].

 – The human has an foot energy efficiency of 241% during running at 2.8 m s⁻¹ [6] - In contrast, the SACH foot has been reported to have an energy efficiency of 31% and the flex foot 84% during running at 2.8 m s⁻¹ [6]

 – Peak angle power values were found to be considerably higher, as was mechanical work done, for the intact foot (1853–2741 W) compared to the flex-sprint (870–1012 W) and Cheetah (307–637 W) [7].
Indhold

• Shape and stiffness

 – Different cheetah (standard shape, harder stiffness – wider shape, normal stiffness – wider shape, harder stiffness) were used to optimize maximal running speed (30 m). A stiffer foot, wider c-curve gave the fastest sprint speed of all, plus a greater amount of both plantar and dorsiflexion than the Cheetah [21].

 – carbon fiber prostheses allow amputees to attain the same energy cost levels as able-bodied persons during running. It is not known whether this also holds for or is exceeded in sprinting.[18]
Indhold

• Center of mass and inertia
 – Alignment and position of centre of mass (CM) differs between sprint foot models and individual set-ups
 – CM and inertia changes had little effect on gait kinematics, but did alter gait kinetics [26,27].
 • Such studies have not been found on how these changes affect running so it is not yet known how much of an increase in swing phase speed can be gained.

• Kinematic and Kinetic patterns of running
 – Asymmetry at the start of the approach run, i.e. at a slower running speed, tended to increase running speed by increasing intact limb step length[29].
 – Asymmetric limb patterns have also been seen. At foot contact the residual limb knee [11] and hip [11,12] are more flexed than the intact limb.
 – Reduced prosthetic limb vertical ground reaction forces [12], knee extensor moment [6,12] and horizontal braking and propulsive forces [12]
Konklusion

• Current running prostheses do not match the human foot in terms of energy efficiency,
• The stiffness and shape of the prostheses could be optimized.
• Carbon prostheses, although considerably lighter than a human limb, allow amputees to reach the same energy cost when running as able-bodied persons