SKELETAL MUSCLE FUNCTION – INTERVENTIONS ATTACKING ACUTE AND OVERUSE INJURIES – SUMMARY

Uwe G. Kersting

Center for Sensory-Motor Interaction, Aalborg University, Denmark
Background

Oxygen consumption is decisive for distance running performance

Main approach: Cardiovascular training

→ Training methods!

However, mechanical alterations may provide a basis for further increases: BW, technique, footwear
Background

No gain by using an ‘energy return’ shoe

(Mercer et al 2003)

1.1% decrease in VO$_2$ consumption

(Morgan et al 1996)

Oxygen consumption can be varied by 1 – 2%

(Frederick 1984)
Background

Comparison of VO₂ and EMG changes by elastic versus viscous midsole:
VO₂ and EMG not systematically changed
Individual response partly explained by EMG

(Nigg et al 2002)

Significant differences between most and least comfortable shoe

(Nigg 2001)
Purpose

Relate effects of medial and lateral heel inserts on rearfoot motion, VO$_2$ consumption, muscle activation and comfort during treadmill running.

Hypotheses

Individual responses!

VO$_2$ changes relate to changes of neuromuscular effort

VO$_2$ changes relate to perceived comfort
Methods

Participants

9 recreational runners
age = 23 - 40 yrs
BW = 70.6 ± 7.1 kg
height = 1.74 ± 0.07 m

Regular training ≥25 km/wk

No injuries >3 yrs, ‘neutral’ feet
Methods

Electromyography
Bipolar surface EMG (biovision) from 8 muscles; left thigh & leg
VM, VL, BF, TA, PE, GM, GL, SO

Kinematics
Customised rearfoot goniometer
Sagittal plane video (Basler, 101 Hz)
Tibial accelerometer & synch unit (biovision)
→ Recorded onto datalogger (compaq)
Methods

Oxygen Consumption (VO$_2$)

MOXUS VO$_2$ analyser system; expiratory volumes of CO$_2$ and O$_2$ (15 s intervals)

Protocol

Preparation

Familiarisation (5 – 10 min) (Quinton treadmill)

Run at ~70% of 5k time

For 3 x 16 min with 6 – 8 min breaks
Assessment/Analysis

EMG: rectified, integrated over stride cycle → ‘neuromuscular effort’

- Maximum eversion from barefoot reference
- Stride frequency, knee and ankle kinematics
- VO$_2$ (average: 10th & 11th minute)
- VAS (0 – 10) of perceived exertion and comfort
- Heart rate

(Moritani et al 1993)
Results

No alterations in knee or talocrural joint kinematics

Minimum Rearfoot Angle

<table>
<thead>
<tr>
<th>Insert angle °</th>
<th>lateral</th>
<th>neutral</th>
<th>medial</th>
</tr>
</thead>
<tbody>
<tr>
<td>angle (°)</td>
<td>-10</td>
<td>-8</td>
<td>-6</td>
</tr>
</tbody>
</table>

* p = 0.02
Results

\(\text{Vo}_2 \): no order effects

\(\implies \) subjects were running at steady state

\(\text{Oxygen Consumption} \)

<table>
<thead>
<tr>
<th>(\text{VO2 [% max]})</th>
<th>lateral</th>
<th>neutral</th>
<th>medial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(p = 0.042 \)
Results

160 - 105 – 149 mVs \rightarrow 3 – 1 – 2 ; 8 muscles
Discussion

Rearfoot motion was systematically altered

Magnitude of changes was overall ‘smaller’ than the intervention

Oxygen consumption varied significantly: medial shoe demonstrating highest values

Integrated EMG corresponds to \(\text{VO}_2 \)

At best, a trend for perceived comfort relating to energy expenditure was observed
Discussion

Explanation?
Preferred movement path!
Discussion

Explanation?
Preferred movement path!

Muscle forces needed to maintain joint congruence
Soft tissue vibrations?
Implications for fatigue → injury
Conclusion

Footwear induced alterations of rearfoot movement affect muscle activity and total energy consumption.

A certain amount of physiological pronation is necessary.

Musculoskeletal system may attempt to maintain joint congruence by muscle forces.

Need to identify factors determining the ‘preferred movement path’ of individuals.
The effect of ‘controlled’ slip on muscular activity and GRF during change in direction tasks

Uwe G. Kersting
Introduction

Lateral ankle sprains = most common injury in many sports
Importance considered less than knee injuries (ACL)
Long-term effects often under-estimated

(Injury mechanism of non contact ankle sprains unknown)

(Larsen et al., 1999)

(Bahr & Krosshaug, 2005)
Introduction

Combined plantar-flexion & inversion → Supination torque exceeds structural limits of ankle joint complex

Factors?
Passive stiffness of ankle joint
Muscle activation pre and during contact → Reflexes
Foot position at TD (Wright et al., 2000)
Joint loading in early contact phase
Early contact

Traction/Friction?
Sliding?
Rest of the body?
Early contact

GRF, vertical and horizontal components

Traction/Friction?
Sliding?
Rest of the body?

Muscles, mainly PL, TS, TA
PURPOSE

To assess the effect of small slip episodes during early ground contact in turning movements.

How do ground reaction forces alter?
What changes can be observed in the EMG of lower extremity muscles?
Methods

Subjects

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>BM [kg]</th>
<th>Height [m]</th>
<th>Age [y]</th>
<th>Shoe Size</th>
<th>current train [h/w]</th>
<th>previous train [h/w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>13</td>
<td>73.3</td>
<td>1.75</td>
<td>32</td>
<td>41.2</td>
<td>3.5</td>
<td>6.4</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>12.5</td>
<td>0.09</td>
<td>8.3</td>
<td>2.7</td>
<td>2.5</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Perturbator:

4 hydraulic actuators
AMTI force plate on top
reaction time: 13 – 15 ms

(Doornik & Sinkjær, 2007)
Data collection & analysis

GRF (2400 Hz); corrected for inertia effects of moving platform (MatLab 7.4), filtered at 65 Hz

- Min1 and Max1 of horizontal and vertical components

EMG (2400 Hz); Noraxon Telemyo, bandpass filtered (20 – 600 Hz), rectified, integrated:
 - TA, GM, GL, SO, PL, VM, RF, BF

0 ms - 120 ms: ’reflex’

120 ms - TO: ’voluntary’
Experimental procedure

Warm up – instructions & no platform movement
Familiarization – incl. platform movement
Measurement - 40 valid trials, 8 per condition
• foot on platform, no double contact
• random application of platform movements:
 still (ST)
 3 cm/242 ms (SS) 3 cm/121 ms (SM)
 6 cm/242 ms (LM) 6 cm/121 ms (LF)
Results

vertical GRF decreases with increasing slip amplitude and velocity (15%)

horizontal GRF decreases ‘similarly’ but maximum value at LM slip (16%)
Results

contact time decreases with minimum at LM (10%)

Muscular activity

- no change in pre-activation EMG (-150 ms – TD)
- no modulation of EMG in reflex window (0 - 120 ms after slip onset)
Voluntary

GL significantly elevated in SM condition (9%)

VM consistently decreases with increasing amplitude and velocity
Discussion

GRF reduction bears the potential to reduce joint loading.
Horizontal forces are minimal for LM → optimum slip condition!
Shorter contact time indicates better use of stretch shortening cycle.
No EMG alterations during typical reflex time window.
Changes in EMG: knee extensors show lower activation → more efficient movement!
Conclusion

New method; suited to comprehensively assess loading under slipping conditions
Slipping reduces GRF maxima and changes alignment of force vector
No modulation in reflex; BUT significant changes in voluntary activity in key muscles
Further research: joint loading – individual muscle contributions - slip at different times
Acknowledgements

Spar Nord & Obels Foundations

Nike - Shoes

Dr. Natalie Mrachacz-Kersting
Marie Haase Juhl
Dr. Sharon Dixon
Summary

Muscle activity is affected by medio-lateral movement changes → fatigue, overloading, long term effects need to be addressed

Muscle activity is affected by ‘slipperiness’ of surface immediately during execution of cutting manoeuvres → safety options for sport surfaces, footwear & performance
Mission to Mars?

Travel Time: 214 days (one way)
Gravity on Mars: 38% of surface of our planet

What happens when exposed to micro gravity for short or considerable time periods?
- To skeletal muscle
- To tendon (other tissues, other systems)

Explain based on the information provided in the course! (2 pages)

How to counteract (before, on the trip and retraining on earth)?
- What training paradigms can be used to ‘address’ the different tissues?
- What devices/programs have been suggested?

Suggest the obvious from the course contents – add from additional literature! (2 pages)